博碩士論文 976202007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.220.239.179
姓名 許軒瑞(Hsuan-jui Hsu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 利用時頻分析技術檢視汶川地震土壤非線性反應區域
(Recognition soil nonlinearity area applying the time-frequency analysis method in Wenchuan earthquake)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地震觀測研究中,近地表土層所造成之土壤非線性反應之研究對於災害防制與評估非常重要。本研究使用單站頻譜比法與短時傅氏轉換結合之時頻分析技術檢視2008 年5 月12 日發生於中國四川省之汶川地震其土壤非線性反應區域。汶川地震造成中國四川省非常大的財產及人員之災害損失,其破裂長度超過310 Km,地表最大加速度更是大於950 gal。在次生地質災害上也有發現土壤液化。土壤非線性反應與土壤液化息息相關,故本研究將對於各測站之土壤非線性反應劃分強度區域。張志偉(2008)中使用雙站頻譜比法與短時傅氏轉換結合之時頻分析技術得以有效於時間序列上觀察出土壤非線性反應的發生,而本研究改為使用單站頻譜比法,對於土壤非線性反應特性之中,共振主頻會向低頻移動之特性得以有效觀察。對於強振動後在時間序列上,共振主頻逐漸回復之情形也有發現。但對於壓抑放大作用之特性並不明顯,推測可能原因來自於單站頻譜比法其比值無法有效的反應土壤放大因子之倍率有關。利用時間序列上A-Window(背景雜訊)、B-Window(強振動)與C-Window(強振動後時間序列上最弱振動)三個視窗其單站頻譜比特定頻段與交互相關值差量化出測站土壤非線性強度區域。B-Window 與C-Window 差異大致上主頻向低頻移動0.2 Hz~0.6 Hz 為疑似土壤非線性反應區域,0.6 Hz 以上為明顯土壤非線性反應區域。比較B-Window與A-Window 差異,明顯土壤非線性反應測站大多位於頻率差值大於2.1
Hz。土壤非線性反應強度區域與水平向加速度峰值以及地表最大加速度較符合,與土壤非線性反應主要來自於剪應力所造成相符合,大致上當PGA 大於50 gal 有可能產生土壤非線性反應,PGA 大於200 gal 以上則有非常明顯之土壤非線性反應。且與現地調查之土壤液化點位比較結果。土壤液化區域主要有三區,皆為近斷層附近。正好位於本研究中所顯示之明顯土壤非線性反應之頻率差值較高(大於2.4 Hz)的區域。
摘要(英) Using time-frequency analysis to determine the time variation soil response is the new development method in the past few years. It could effectively observe the predominant frequency variation with time and de-amplification when the strong seismic waves pass into the surface soft soil layer. In this study, the May 12, 2008 China Wenchuan earthquake data were used. After the baseline correction, using the time-frequency analysis combined single-station spectral ratio with the short time Fourier transform, the resulting time-frequency diagram clearly show the predominant frequency shift to low-frequency in the strong seismic wave part. When amplitude change to small, the predominant frequency will recover, but most couldn’t return to the value before the arrival of strong shaking. The soil stations classified to possible non-linear response as the predominant frequency shifted 0.2 Hz~0.6 Hz. The clear non-linear response stations which predominant frequency shift greater than 0.6
Hz. The possible non-linear response stations mostly located at PGA area larger than 50 gal. The clear non-linear response stations mostly located at PGA area larger than 200 gal. The observed soil liquefaction points and the non-linear response stations located at same areas in three regions along the fault.
關鍵字(中) ★ 時頻分析
★ 汶川地震
★ 土壤非線性反應
關鍵字(英) ★ Time-frequency analysis
★ Wenchuan earthquake
★ Soil nonlinearity
論文目次 中文摘要 ……………………………………………………………… i
英文摘要 …………………………………………………………… ii
誌謝 ………………………………………………………………… iii
目錄 ………………………………………………………………… iv
圖目錄 ……………………………………………………………… vi
一、 緒論……………………………………………………………… 1
1.1 研究動機與目的………………………………………………… 1
1.2 文獻回顧………………………………………………………… 2
1.3 本文大綱………………………………………………………… 5
二、 研究區域背景與記錄資料來源………………………………… 6
2.1 研究區域之背景資料…………………………………………… 6
2.1.1 龍門山斷層帶的大地構造及地質概況……………………… 6
2.1.2 汶川地震所造成的災損情形………………………………… 7
2.1.3 研究區域地質………………………………………………… 8
三、 研究原理與方法……………………………………………… 14
3.1 土壤非線性反應………………………………………………… 14
3.1.1 大地工程上的土壤非線性反應……………………………… 14
3.1.2 地震觀測上的土壤非線性反應……………………………… 16
3.2 研究方法………………………………………………………… 17
3.2.1 傅氏振幅譜…………………………………………………… 17
3.2.2 短時傅氏轉換………………………………………………… 18
3.2.3 單站頻譜比法………………………………………………… 18
3.2.4 Degree of Nonlinear Site Response (DNL)…………… 21
四、 資料處理……………………………………………………… 29
4.1 短時傅式轉換結合單站頻譜比法……………………………… 29
五、 結果與討論…………………………………………………… 41
5.1 利用時頻圖與加速度紀錄檢視………………………………… 41
5.1.1 明顯土壤非線性反應測站…………………………………… 41
5.1.2 疑似土壤非線性反應測站…………………………………… 42
5.1.3 無土壤非線性反應測站……………………………………… 42
5.1.4 特殊土壤非線性反應測站…………………………………… 43
5.2 將土壤非線性反應定量化……………………………………… 43
5.2.1 C-Window 與B-Window 頻率位移…………………………… 44
5.2.2 A-Window 與B-Window 頻率位移…………………………… 44
5.2.3 A-Window 與B-Window 以及C-Window 與B-Window放大因子差值……………………………………………………………………… 45
5.2.4 A-Window 與B-Window 以及C-Window 與B-Window之DNL… 46
5.3 使用加速度峰值及現地調查土壤液化點位對其分區為
探討…………………………………………………………………… 46
5.3.1 加速度峰值與土壤非線性反應區域比較…………………… 46
5.3.2 現地調查土壤液化點位與土壤非線性反應區域比較……… 46
六、 結論…………………………………………………………… 78
參考文獻 …………………………………………………………… 80
參考文獻 1. Aguirre, J. and Irikura, K., “Nonlinearity, liquefaction, and velocity variation of
soft soil layers in Port Island, Kobe, during the Hyogo-ken Nanbu earthquake,”
Bull. Seism. Soc. Am. 87, 1244-1258, 1997.
2. Aki, K., “Local site effects on strong motion,” Earthquake Engineering & Soil
Dynamics, GT Div/ASCE, Park city, Utah, June 27-30, 103-155., 1988
3. Aki, K. and Chin, B. H., “Local site effects on weak and strong ground motion,”
Int. Sym. On Earthq. Disaster Prevention, Mexico City, Mexico, Vol. I, 198-211,
1992.
4. Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Nonlinear soil amplification:Its
corroboration in Taiwan,” Bull. Seism. Soc. Am., 85, 496-515, 1995a.
5. Beresnev, I. A., Wen, K. L., and Yeh, Y. T., “Seismological evidence for nonlinear
plastic ground behavior during large earthquakes,” Soil. Dyn. Earthquake Eng.,
14, 103-114, 1995b.
6. Boore, D. M., Seekins, L., and Joyner, W. B., “Peak acceleration from the 17
October 1989 Loma Prieta earthquake,” Seism. Res. Lett. 60, 151-166, 1989.
7. Borcherdt, R. D., “Influence of local geology in the San Francisco Bay region,
California, on ground motion generated by the Loma Prieta earthquake of
October 17, 1989,” Proc. Int. Symp. Safety and Urban Life and Facilities (Tokyo,
Japan), 1990.
8. Chang, C. Y., Mok, C. M., Power, M. S., Tang, Y. K., Tang, H. T. and Stepp, J. C.,
“Equivalent linear versus nonlinear ground response analyses at Lotung seismic
experiment site,” Proc. Of 4th U.S. National Conference on Earthquake
Engineering, Palm Springs, California, Vol. 1, 327-336, 1990.
9. Chin, B. H. and Aki, K., “Simultaneous determination of source, path and
recording site effects on strong ground motion during the Loma Prieta
earthquake a preliminary result on pervasive nonlinear site effect,” Bull.Seism.
Soc. Am. 81, 1859-1884, 1991.
10. Darragh, R. B. and Shakal, A. F., “The site response of two rock and soil station
pairs to strong and weak ground motion, ” Proc. 4th Intl. Conf. Seismic Zonation,
Vol. 3, 359-366, 1991a.
81
11. Darragh, R. B. and Shakal, A. F., “The site response of two rock and soil station
pairs to strong and weak ground motion,” Bull. Seism. Soc. Am. 81, 1885-1899,
1991b.
12. Duncan, J. M. and Chang, C. Y., “Nonlinear analysis of stress and strain in soils,”
ASCE, J. of the Soil Mech. And Foundations Division, 96, SM5, 1629-1651, 1970.
13. Esteva, L., “Microzoning: models and reality,” Proc. 6th World Congr.
Earthquake Eng. (New Dehli), 1977.
14. Finn, W. D. Liam, Lee, K. W. and Martin, G. R., “An effective stress model for
liquefaction,” ASCE, J. of the Soil Mech. And Foundations Division, 103, GT6,
517-533, 1977.
15. Gutenberg, B., “Effects of ground on earthquake motion,” Bull. Seism. Soc, Am.
47, 221-250, 1957.
16. Hardin, B. O. and Drnevich, V. P., “Shear modulus and damping in soil: design
equations and curves,” J. Soil Mech. Foundations Div. ASCE, 12, 537-564, 1972.
17. Huang H. C. and T. L. Teng, “An evaluation on H/V ratio vs spectral ratio for site
response estimation using the 1994 Northridge earthquake sequence,” Pure &
Applied Geophysics, 156, 631-649,1999.
18. Jarpe, S. P., Cramer, C. H., Tucker, B. E. and Shakal, A. F., “A comparison of
observation of ground response to weak and strong ground motion at Coalinga,
California,” Bull. Seism. Soc. Am. 78, 421-435, 1988.
19. Jarpe, S. P., Jutchings, L. J., Hauk, T. F. and Shakal, A. F., “Selected strong- and
weak-motion data from the Loma Prieta earthquake sequence.” Bull. Seism.
Soc. Am. 60, 167-176, 1989.
20. Mohammadioun, B. and Pecker, A., “Low- frequency transfer of seismic energy
by superficial soil deposits and soft rocks,” Earthq. Eng. Struc. Dyn., 12,
537-564, 1984.
21. Nakamura, Y. , “A method for dynamic characteristics estimation of subsurface
using microtremor on the ground surface, ” QR of RTR1 1989, 30, 1.
22. Noguchi, S. and Sasatani, T. “Quantification of Degree of Nonlinear Site
Response, ” The 14th World Conference on Earthquake Engineering October
12-17, 2008, Beijing, China
82
23. Pavlenko,O. V. and Irikura, K. , “Estimation of Nonlinear Time-dependent Soil
Behavior in Strong Ground Motion Based on Vertical Array Data,” Pure appl.
geophys. 160 (2003) 2365–2379
24. Rogers, A. M., Borcherdt, R. D., Covington, P. A. and Pekins, D. M., “A
comparative ground response study near Los Angles using recordings of
Nevada nuclear tests and the 1971 San Fernando earthquake,” Bull. Seism. Soc.
Am. 74, 1925-1949, 1984.
25. Rogers, A. M., Tinsley, J. C. and Borcherdt, R. D., “Predicting relative ground
response. In: J.I. Ziony (Editor), Evaluating Earthquake Hazards in the Los
Angles region,” US Geol. Surv. Prof. Paper 1360, 221-248, 1985.
26. Sato, K., Kokusho, T., Matsumoto, M. and Yamada, E., “Nonlinear sesmic
response and soil property during strong motion,” Special Issue of Soil and
Foundations, Japan Geotech. Soc., 41-42, Jan, 1996.
27. Satoh, T., Sato, T. and Kawase, H., “Nonlinear behavior of soil sediments
identified by using borehole records observed at the Ashigara Valley, Japan,”
Bull, Seism. Soc. Am. 85, 1821-1834, 1995.
28. Satoh, T., Horike, M., Takeuchi, Y., Uetake, T. and Suzuki, H., “Nonlinear
behavior of scoria soil sediments evaluated from borehole records in eastern
Shizuoka prefecture, Japan,” Earthquake Eng. Struct. Dyn. 26, 781-795, 1997.
29. Wen, K. L, Beresnev, I. A., and Yeh, Y. T., “Nonlinear soil amplification inferred
from downhole strong seismic motion data,” Geophys. Res. Lett., 21,
2625-2628, 1994.
30. Wen, K. L., Beresnev, I. A. and Yeh, Y. T., “Investigation of non-linear site
amplication at two downhole strong ground motion arrays in Taiwan,” Earthq.
Eng. Struct. Dyn., 24, 313-324, 1995.
31. Wen, K. L., T. M. Chang, C. M. Lin, and H. J. Chiang., “Identification of nonlinear
site response using the H/V spectral ratio method,” Ter. Atm. Oce., 17, 3,
533-546, 2006.
32. Wu, Y. M., Wu, C. F., “Approximate recovery of coseismic deformation from
Taiwan strong-motion records,” Journal of Seismology 11 (2): 159-170,2007.
33. 王敏,基於GPS同震位移場約束反演2008年5.12汶川大地震破裂空間分佈,
地球物理學報,第52卷,第10期,2009。
83
34. 李永昭,郭兵,成都平原的晚新生代構造,成都理工大學學報(自然科學
版),第35卷,第4期,2008。
35. 杜國云,邢秀臣,龍門山山前砂土液化初步研究,水文地質工程地質,第
37卷,第1期,2010。
36. 林茂炳,汶川大地震與龍門山構造帶,成都理工大學學報(自然科學版),
第35卷,第4期,2008。
37. 袁曉銘,曹振中,孫銳, 等,汶川8.0級地震液化特徵初步研究,岩石
力學與工程學報,第28卷,第6期,2009。
38. 張毅,李勇,周榮軍, 等,晚新生代以來青藏高原東緣的剝蝕過程:來
自裂變徑蹟的證據,沉積與特提斯地質,第26卷,第1期,2006。
39. 張永?,雷偉志,石菊松,吳樹仁,王獻禮,四川5.12地震次生地質災害
的基本特徵初析,地質力學學報,第14卷,第2期,2008。
40. 張志偉,利用時頻分析技術檢視土壤非線性反應。國立中央大學碩士論文,
2008。
41. 謝宏灝,利用井下地震儀陣列探討單站頻譜比法之應用,國立中央大學地
球物理所碩士論文,2001。
指導教授 溫國樑(Kuo-Liang Wen) 審核日期 2010-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明