博碩士論文 976204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.191.44.23
姓名 陳奕中(Yi-chung Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 關渡濕地沉積物中砷之地化循環與分布
(Distribution and geochemical cycling of arsenic in Guandu wetland)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 北投地熱谷溫泉之砷含量高達4.6 mg/L,含砷之溫泉水可能沿著地表溪流與地下水補注之傳輸過程進入下游之關渡平原、關渡濕地及淡水河口生態系統,然而目前研究鮮少探討濕地系統中砷之循環與分佈。本研究針對關渡濕地之沉積物與孔隙水進行化學定量分析,探討砷與其他相關化學物質在濕地之空間分佈,再根據前述分析結果挑選適當沉積物樣本進行多段式連續萃取,判別與砷富集有關之礦物相別,並初步推論砷可能之地化反應與循環,此外藉由高解析電子能譜儀(HR-XPS)及掃描式電子顯微鏡暨能量分散光譜儀(SEM-EDS)進行表面化學分析,以確認與砷相關之礦物成分。由研究結果顯示表層沉積物,砷與鐵之釋出受氧化條件之影響,因此其孔隙水中砷與鐵含量較低,而底部沉積物屬還原環境,沉積物含量隨深度逐漸升高,有利於含砷之鐵(錳)氧化物之還原反應,造成砷與鐵(錳)之溶解釋出,然而於更深之地層環境,大量硫酸鹽於此環境亦發生還原作用而產生硫化物,此過程可能吸附由鐵(錳)氧化物還原釋出於孔隙水之砷,造成底部孔隙水中砷含量降低且鐵(錳)離子增加之現象,連續萃取之分析結果指出濕地沉積物中砷主要以吸附或沉澱作用,累積於無晶形與結晶型之金屬氧化物。最後根據HR-XPS與SEM-EDS結果,砷於關渡濕地沉積物主要吸附於鐵(錳)氧化物與黃鐵礦,其分布與移動受氧化還原狀態改變之影響。
摘要(英) As concentration of Beitou geothermal spring water was up to 4.32 mg/L . High As contents may be mobilized to downstream of coastal plain, wetland, and estuary ecosystem. However, both the cycling and distribution and of As in the wetland ecosystem are still poorly defined at present. The purpose of this study is to analyse with chemical and mineralogical characterization(HR-XPS and SEM-EDS) methods to determine the spatial distribution of arsenic between aqueous and solid phase and mineral assemblages.In addition, the sequential extraction procedures is applied to estimate the As form in mineral phase.In upper sediment , free As and Fe species in aqueous phase was restrained by oxidation condition, causing a low concentration of arsenite and ferrous iron. Highest As and Fe concentrations in pore water were found at Fe-reducing depth and suggesting from reductive dissolution of As-contained Fe oxides. A decrease of solid phase Fe/Mn contents with depth in both cores suggested that reductive dissolution of Fe/Mn oxides in the lower layer was likely to occur with increasing organic matter. In the lower layer, aqueous As concentrations were constrained by reducing condition causing precipitated sulfide minerals and retained on particles of lower layer sediment. Most of extracted As concentrations were incorporated in amorphous and crystalline metal oxides. Based HR-XPS and SEM-EDS, distribution and mobilization of As in this wetland systems is primarily associated with Fe/Mn oxides and pyrite, which governed by the ambient redox condition.
關鍵字(中) ★ 砷
★ 氧化還原
★ 濕地
★ 循環
★ 關渡
關鍵字(英) ★ Wetland
★ Arsenic
★ Redox
★ Cycle
★ Guandu
論文目次 謝誌I
摘要III
AbstractIV
目錄VI
圖目錄X
表目錄XII
第一章 前言1
1-1 研究動機1
1-2 研究目的4
1-3 研究架構4
第二章 文獻回顧6
2-1 環境中砷之特性與分布6
2-2 溫泉環境中砷之分布10
2-3 濕地環境中砷之分布與循環12
2-3-1 濕地環境之地化特性12
2-3-2砷於濕地生態系統之循環13
2-4 沉積物中與砷相關之礦物與反應14
2-4-1 砷之吸附行為14
2-4-2 鐵氧化物之影響15
2-4-3 碳酸鹽之影響16
2-4-4 硫酸鹽礦物之影響16
2-5 含砷沉積物之連續萃取17
第三章 材料與方法34
3-1 研究區域34
3-1-1 臺北盆地之區域地質34
3-1-2 研究地點 36
3-2 研究方法38
3-3 地面水與孔隙水水質分析42
3-3-1 地面水基本特性分析42
3-3-2 物種砷46
3-3-3 物種鐵47
3-4 沉積物岩性分析47
3-4-1 沉積物含水量47
3-4-2 風乾沉積物中硫酸根(SO42-)分析48
3-4-3 沉積物有機碳分析48
3-4-4 沉積物總砷、總鐵及總錳分析49
3-5 沉積物之連續萃取與分離萃取50
3-6 沉積物表面化學分析56
3-6-1 高解析X光光電子能譜儀56
3-6-2 掃描式電子顯微鏡暨能量分散光譜儀56
第四章 結果與討論 60
4-1 地面水與表層沉積物分析60
4-1-1 地面水水質化學特性60
4-1-2 地表沉積物分析結果61
4-1-3 砷於地表沉積物之分布探討61
4-2 孔隙水與岩心沉積物分析68
4-2-1 孔隙水分析結果68
4-2-2 岩心沉積物分析結果69
4-2-3 沉積物中砷之吸附、沉澱與釋出之探討70
4-3連續萃取總砷分析80
4-3-1砷之連續萃取80
4-3-2砷之分離萃取81
4-3-3 沉積物中砷於不同相態分布之探討82
4-4表面化學分析87
4-4-1 高解析電子能譜儀(HR-XPS)87
4-4-2 掃描式電子顯微鏡(SEM)93
4-5 綜合討論104
第五章 結論與建議108
5-1 結論108
5-2 建議110
參考文獻111
參考文獻 王尚禮,2009,北投關渡砷之來源、傳輸與宿命。北投關渡地區砷污染研討會論文集。
吳文菁,2008,探討砷在關渡平原中水田與旱田土壤之分布,國立中興大學土壤環境科學系碩士學位論文。
吳明哲,2008,蘭陽平原地下水及地層中砷之分布與特徵:意涵砷之釋出過程,國立台灣大學生物環境系統工程研究所碩士論文。
李淑芬,1996,大屯火山群七星山火山亞群熔岩層序之研究,國立台灣大學地質科學研究所碩士論文。
邱文雅,1999,關渡濕地水土特性分析與生態風險之評估,國立台灣大學農業工程研究所碩士論文。
林佩儀,2007,晚第四紀以來臺北盆地沉積物的組成特性,國立台灣大學地質科學研究所碩士論文。
卓腕淇,2006,臺北盆地地下水水位變遷與地盤變動,國立台灣大學地質科學研究所碩士論文。
莊文星、陳汝勤,1989,臺灣北部火山岩之定年與地球化學研究。經濟部中央地質調查所彙刊,第5號,31-66。
陳柏淳、蕭如瑾、趙彥婷,2007,大屯火山區溫泉水質特性及砷污染問題初步探討。臺灣地球科學聯合學術研討會。
陳英傑,2001,宜蘭平原中興、五結和龍德岩心孔隙水及沈積物地球化學特性之研究,國立台灣大學地質科學研究所碩士論文。
陳咨默,2001,臺北盆地火山泥流堆積物的研究及其意義,國立台灣大學地質科學研究所碩士論文。
陳尊賢、蘇紹瑋、劉天麟,2009,砷污染土壤與作物食品安全性:關渡平原研究現況與全球案例文獻回顧,北投關渡地區砷污染研討會論文集。
曹恕中、宋聖榮、李寄嵎、王永詢、許銘義、林明昌、蘇泰維,2000,臺北盆地關渡一號井火山泥流堆積物初步研究。經濟部中央地質調查所彙刊,第13號,103-118。
張尊國,2007,臺北市農地土壤重金屬含量調查及查證計畫,台北市政府環境保護局。
鄧屬予、袁彼得、陳培源、彭志雄、賴典章、費立沅、劉桓吉,1999,臺北盆地堆積層的岩性地層。經濟部中央地質調查所特刊,第11號,41-66。
盧光亮,2007,濁水溪沖積扇南翼地質岩心中砷釋出機制探討,國立台灣大學生物環境系統工程研究所碩士論文。
Aggett, J., Kriegman, M.R., 1988. The extent of formation of arsenic(III) in sediment interstitial waters and its release to hypolimnetic waters in Lake Ohakuri. Water Research 22, 407-411.
Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S.M.M., Bhuyian, M.A.H., et al. 2004. Arsenic contamination in groundwater of alluvial aquifers in Bangladesh: an overview. Applied Geochemistry 19, 181-200.
Ahn, J.S., Chon, C.M., Moon, H.S., Kim, K.W., 2003. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Research 37, 2478-2488.
Amacher, M.C., Kotuby-Amacher, J., 1994. Selective extraction of arsenic from minesoils, soils, and sediments. Agronomy abstracts 86, 256.
Anderson, M., Ferguson, J.F. and Gavis, J., 1976. Arsenate adsorption on amorphous aluminum hydroxide. Journal of Colloid and Interface Science 54(3), 391-399.
Appelo, C.A.J., Postma, D., 1993. Geochemistry, Groundwater and Pollution. Rotterdam: Balkema.
Ball, J.W., Nordstrom, D.K., Jenne, E.A., Vivit, D.V., 1998. Chemical Analyses Of Hot Springs, Pools, Geysers, And Surface waters from Yellowstone National park, Wyoming, and Vicinity, 1974-1975. USGS Open-File Report, 98-182.
Bauer, M., Fulda, B., Blodau, C., 2008. Groundwater derived arsenic in high carbonate wetland soils: Sources, sinks, and mobility. Science of the Total Environment 401, 109-120.
Beckett, P.H.T., 1989. The use of extractants in studies on trace metals in soils, sewage sludge, and sludge treated soils. Soil Science 9, 143-176.
Bednar, A.J., Garbarino, J.R., Ranville, J.F., Wideman, T.R., 2005. Effects of iron on arsenic speciation and redox chemistry in acid mine water. Journal of Geochemical Exploration 85, 55-62.
Berner, R.A., 1981. A new geochemical classification of sedimentary environment. Journal of Sedimentary Petro1ogy 15, 359-365.
Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R.A., Storniolo, A.d.R., Thir, J.M., 2006. Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment 358, 97-120.
Bhattarcharya, P., Jacks, G., Jana, J., Sracek, A., Gustafsson, J.P., Chatterjee, D., 2001. Geoochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implications on arsenic contamination in groundwater. In: Jacks, G., Bhattacharya, P., Khan, A.A., (eds). Ground water arsenic contamination in the Bengal Delta Plain ofBangldesh. KTH Special Publication TRITA-AMI Report 3084, 21-40.
Bhattacharyya, P., Tripathy, S., Kim, K., Kim, S.H., 2008. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicology and Environmental Safety 71, 149-156.
Blodau, C., Fulda, B., Bauer, M., Knorr, K.H., 2008. Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. Geochimica et Cosmochimica Acta 72, 3991-4007.
Blute, N.K., Jay, J.A., Swartz, C.H., Brabander, D.J., Hemond, H.F., 2009. Aqueous and solid phase arsenic speciation in the sediments of a contaminated wetland and riverbed. Applied Geochemistry 24, 346-358.
Bostick, B.C., Fendorf, S., 2003. Arsenate sorption on troilite (FeS) and pyrite (FeS2). Geochimica et Cosmochimica Acta 67, 909-921.
Bostick, B.C., Fendorf, S., Brown, G.E., 2005. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineralogical Magazine 69, 781-795.
Bottrell, S.H., Newton, R.J., 2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Science Review 75, 59-83.
Bowell, R.J. 1994. Sorption of arsenic by iron oxides and oxyhydroxides in soil. Appied Geochemistry 9, 279-286.
Boyle, R.W., Jonasson, I.R., 1973. The geochemistry of As and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration 2, 251-296.
Cai, Y.C., Cabrera, J.C., Georgiadis, M., Jayachandran, K., 2002. Assessment of arsenic mobility in the soils of some golf courses in South Florida. Science of the Total Environment 291, 123-134.
Chang, S.C., Jackson, M.L., 1957. Frationation of soil phosphorus. Soil Science 84, 133.
Chen, Z., Cai, Y., Solo-Gabriele, H., Snyder, G.H., Cisar, J.L., 2006. Interations of arsenic and the dissolved substances derived from turf soils. Environmental Science and Technology 40, 4659-4665.
Claesson, M., Fagerberg, J., 2003. Arsenic in groundwater of Santiago del Estero-Sources, mobility patterns and remediation with natural materials. Master Thesis, Department of Land and Water Research Engineering, KTH , Stockholm, Sweden, TRITA-LWR-EX-03-05, 59p.
Cornell, R.M. and Schwertmann U., 1996. The iron oxides structure, properties, reactions, occurrence and uses. VCH Weinheim.
Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M., 1999. Advanced Inorganic Chemistry, sixed ed. Wiley, New York. Criaud, A., Fouillac, C., 1989. The distribution of arsenic(III) and arsenic(V) in geothermal waters: Examples from the Massif Central of France, the Island of Dominica in the Leeward Islands of the Caribbean, the Valles Caldera of New Mexico, USA, and southwest Bulgaria. Chemical Geology 76, 259 -269.
Cullen, W.R., Remier, K.J., 1989. Arsenic speciation in the environment. Chemical Reviews 89, 713-764.
Demesmay, C., Olle, M. and Porthault, M., 1994. Arsenic speciation by coupling high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Fresenius Journal of Analytical Chemitry 348, 205-210.
Dodd, J., Large, D.J., Fortey, N.J., Milodowski, A.E., Kemi, S., 2000. A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud. Environmental Geochemistry and Health 22, 281-296.
Dudas, M.J., 1984. Enriched levels of arsenic in post-active acid sulfate soils in Alberta. Soil Science Society of America journal 48, 1451-1452.
Eiche, E., Neumann, T., Berg, M., Weinman, B., van Green, A., Norra, S., Berner, Z., Trang, P.T.K., Viet, P.H., Stüben, D., 2008. Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry 23, 3143-3154.
Gambrell, R.D., 1994. Trace an toxic metals in wetland: a review. Journal of Environmental Quality 23, 883-891.
Gary, D.J., Lintern, M.J., 1998. Further aspects of the chemistry of gold in some Western Austrialian soils. Cooperative Research Centre for Landscape Evolution and Mineral Exploration(CRC LEME), Open file report 34, Wembley West Australia, p.44.
Gleyzes, C., Tellier, S., Astruc, M., 2002. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry 21, 451-467.
Gonzalez, Z.I., Krachler. M., Cheburkin, A.K. and Shotyk, W., 2006. Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Evironmental Science and Technology 40(21), 6568-6574.
Grafe, M., Eick, M.J., Gross, P.R., 2001. Adsortion of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal 40, 1250-1256.
Guo, T., DeLaune, R.D., Patrick Jr, W.H., 1997. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International 23, 305-316.
Gustafsson, J.P., Tin, N.T., 1994. Arsenic and Selenium in some Vietnamese acid sulfate soils. Science of the Total Environment 151, 153-158.
Habicht, K.S., Canfield, D.E., 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29, 555-558.
Hall, G.E.M., MacLaurin, A.I., Garrett, R.G., 1998. Assessment of the 1M NH4NO3 extraction protocol to identify mobile forms of Cd in soils. Journal of Geochemical Exploration 64, 153-159.
Hall, G.E.M., MacLaurin, A.I., Vaive, J.E., 1995. Readsorption of gold during the selective extraction of the “soluble organic” phase of humus , soil and sediment samples. Journal of Geochemical Exploration 54, 27-38.
Han, F. X., Banin, A., 1995. Selective sequential dissolution techniques for trace metals in arid-zone soils: The carbonate dissolution step. Commun. Communications in Soil Science and Plant Analysis 26, 553-576.
Hasan, M.A., von Brömssen, M., Bhattacharya, P., Ahmed, K.M., Sikder, A.M., Jacks, G., Scracek, O., 2009.Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi upazila in the Meghna flood plain, Bangladesh. Environmental Geoloy 57, 499-511.
Hsu, K.H., Forines, J.R., and Chen, C.J., 1997. Studies of Arsenic Ingestion From Drinking Water in Northeastern Taiwan: Chemical speciation and urinary metabolites. In: Abernathy, Calderon, C.O., Chappell, R.L., W.R. (EDs), Arsenic Exposure and Health Effects. Chapman Hall, London, 190-209.
Huang, Y.K., Lin, K.H., Chen, H.W., 2003. Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology 41, 1491-1500.
Huang, J.H., Matzner, E., 2006. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochimica et Cosmochimica Acta 70, 2023 -2033.
Hunt, L.E., and Howard, A.G., 1994. Arsenic speciation and distribution in the Carnon estuary following the acute discharge of contaminated water from a disused mine, Marine Pollution Bulletin 28, 33-38.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C., Hemond, H.F., 2001. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Evironmental Science and Technology 35, 2778-2784.
Kim, M.J., Niagu, J. and Haack, S., 2002. Carbonate ions and arsenic dissolution by groundwater. Evironmental Science and Technology 34, 3094-3100.
Kirk, M.F., Holm, T.R., Park, J., Jin, Q., Sanford, R.A., Fouke, B.W., Bethke, C.M., 2004. Bacterial sulphate reduction limits natural arsenic contamination in groundwater. Geology 32, 953-956.
Kuo, T.L. 1968. Arsenic content of artesian well water in endemic area of chronic arsenic poisoning. Report of the Institute of Pathology of the National Taiwan University 20, 7-13.
Laing, G.D., Chapagain, S.K., Dewispelaere, M., Meers, E., Kazama, F., Tack, F.MG., Rinklebe, J., Verloo, M.G., 2009. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). Journal of Evironmental Monitoring 11, 873-881.
Lièvremont, D., Bertin, P.N., Lett, M.C., 2009. Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91, 1229-1237.
Lovely, D.R., Phillips, E.J.P., 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology 53, 1536-1540.
Lowers, H.A., Breit, G.N., Foster, A.L., Whitney, J., Yount, J., Uddin, N., Muneem, A., 2007. Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochimica et Cosmochimica Acta 71, 2699-2717.
Il’yin, B.V., Konarbayeva, G.A., 1996. Eurasian Soil Science 28, 144.
Jambor, J.L. and Dutrizac, J.E., 1998. Occurrence and constitution of natural and synthetic ferrihydrite, a widesp read iron oxyhydroxide. Chemical Review 98, 2549-2585.
Jong, T., Parry, D.L., 2003. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Research 37, 3379-3389.
Juang, W.S., 1993. Diversity an origin of Quaternary basaltic magma series in northern Taiwan. Bulletin of the National Museum of Natural Science 4, 125-166.
Maest, A.S., Pasilis, S.P., Miller, L.G., Nordstrom, D.K., 1992. Redox geochemistry of arsenic and iron in Mono Lake, California, USA. In: Kharaka, Y.K., Masest, A.S. (Eds.), Proc. 7th Internat. Symp. Water-Rock Interaction. A. A. Balkema, Rotterdam, pp. 507-511.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K., Tamili, D.K., Das, D., Saha, K.C., and Chakraborti, D., 1996. Arsenic in groundwater in seven districts of West Bengal, India the biggest arsenic calamity in the world. Current Science 70, 976-986.
Mandal, B.K., Suzuki, K.T., 2002. Arsenic round the world: A review. Talanta 58, 201-235.
Manning, B.A., Goldberg, S., 1996. Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay minerals 44, 609-623.
Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology 25, 1414-1419.
Matera, V., Hécho, I.L., 2001. Chapter 10: arsenic behavior in contaminated soils: mobility and specification. In: Selim, D.L., Sparks, D.L., (Eds), Heavy Metals Release in Soils. Lewis Publishers, Boca Raton, USA, 207-235.
Meharg, A.A., Scrimgeour, C., Hossain, S.A., Fuller. K., Cruickshank, K., Williams, P.N., Kinniburgh, D.G., 2006. Codeposition of organic carbon and arsenic in Bengal Delta aquifers. Evironmental Science and Technology 40, 4928-4935.
Mester, Z., Cremisini, C., Ghiara, E. and Morabito, R., 1998. Comprison of two sequential extraction procedures for metal fractionation in sediment samples. Analytica Chimica Acta 359, 133-142.
Mitsch, W.J., and Gosselink, J.G., 2000. Wetlands. John Wiley & Sons, Jnc.
Mohanty, S.K., and Dash, R.N., 1982. The chemistry of waterlogged soils, in Wetlands-Ecology and Management, Gopal, B., Tumer, R.E., Wetzel, R.G., and Whigham, D.F., eds., Natural Institute of Ecology and International Scientific Publications, Jaipur, India, 389-396.
Montperrus, M., Bohari, Y., Bueno, Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy 2002. Applied Organometallic Chemistry 16, 347- 354.
Moore, J.N., Flcklin, W.H., John, C., 1988. Partitioning of arsenic and metals in reducing sulfidic sediments. Evironmental Science and Technology 22, 432-437.
Muhammad, S., 1995. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water, Air, and Soil Pollution 93, 117-136.
Olive-Lauquet, G., Gruau, G., Dia, A., Roiu, C., Jaffrezic, A., Henin, O., 2001. Release of trace elements in wetlands: role of seasonal variability. Water Research 35. 943-952.
Onishi, H., 1969. Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, New York Vol. II-2, Chapter 33.
Park, J.M., Lee, J.S., Lee, J.-U., Chon, H.T., Jung, M.C., 2006.Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. Journal of Geochemical Exploration 88, 134-138.
Pichler, T., Hendry, J., Hall, G.E.M., 2001. The mineralogy of arsenic in uranium mine tailings at the Rabbit Lake in-pit facility, northern Saskatchewan, Canada. Environmental Geology 40, 495-506.
Price, R., Pichler, T., 2005. Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chemical Geology 224, 122-135.
Quevauviller, P., Rauret, G., Griepink, B., 1993. Single and sequential extraction in sediment and soils. International Journal of Environmental Analytical Chemistry 51, 231-235.
Redmna, A.D., Macalady, D.L., Ahmann, D., 2002. Natural organic matter affects arsenic speciation and sorption onto Hematite. Environmental Science and Technology 36, 2889-2896.
Regenspurg, S., Peiffer, S., 2005. Arsenate and chromate incorporation in Schwertmannie. Applied Geochemistry 20, 1226-1239.
Reith, F., McPhail, D.C., Christy, A.G., 2005. Bacilus cereus, gold and associated elements in soil and other regolith samples from Tomakin Park Gold Mine in southeastern New South Wales, Australia. Journal of Geochemical Exploration 85, 81-98.
Robinson, B., Outred, H., Brooks, R., Kirkman, J., 1995. The distribution and fate of arsenic in the Waikato River System, North Island, New Zealand, Chemical Speciation and Bioavailabilty 7, 89-96.
Rothwell, J.J., Taylor, K.G., Ander, E.L., Evans, M.G., Daniels, S.M., Allott, T.E.H., 2009. Arsenic retention and release in ombrotrophic peatland. Science of The Total Evironment 407, 1405-1417.
Roy, P., Saha, A., 2002. Metabolism and toxicity of arsenic: A human carcinogen. Current Science 82, 38-45.
Shacklette, H.T., Boerngen, J.G., and Keith, J.R., 1974. Selenium fluorine and arsenic in superficial materials of the conerminous United States. U.S. Geological Survey, Circular 692. U.S. Government Printing Office, Washing D.C.
Smedley, P.L. and Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568.
Steinmann, P., Shotyk, W., 1997a. The geochemistry of major elements in peats from two contrasting Sphagnum bogs, Jura Mountains, Swizerland. Chemical Geology 138. 25-53.
Steinmann, P., Shotyk, W., 1997b. The pH, redox chemistry, and speciation of Fe and Sin pore waters from two contrasting Sphagum bogs, Jura Mountains, Swizerland. Chemical Geology 138. 25-53. Chemical Geology 138. 25-53.
Song, S.R., Tsao, S. and Lo, H.J., 2000b. Characteristics of the Tatun Volcanic eruptions, northern Taiwan: Implication for a cauldron formation and volcanic evolution. Journal of the Geological Society of China 43(2), 361-378.
Strumm, W. and Morgan, J.J., 1996. Aquatic Chemistry: chemical equilibria and rates in natural water, 3rd edition, John Wiley & Sons, New York.
Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry 51, 844-851.
Tseng , W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S., and Yeh, S., 1968. Prevalence of Skin Cancer in an Endemic Area of Chronic Arsenicsm in Taiwan. Journal of the National Cancer Institute 40, 453-463.
Thompson, J.M., Keith, T.E.C., Consul, J.J., 1985. Water chemistry and mineralogy of Morgan and Growler hot springs, Lassen KGRA, California. Transactions of the Geothermal Research Council 9, 352-362.
Thornburg, K., Sahai, N., 2004. Arsenic occurrence, mobility, and retardation in sandstone and dolomite formations of the Fox River Valley, Eastern Wisconsin. Environmental Science and Technology 38. 5087-5094.
Tipping, E., Smith, E.J., Lawlor, A.J., Hughes, S., Stevens, P.A., 2003. Predicting the release of metals from ombrotrophic peat due to drought- induced acidification. Environmental Pollution 123, 239-253.
Tsai, S.L., Singh, S., and Chen, W., 2009. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology 20, 659-667.
Tseng, L.S., Yuan, P.B., Yu, N.T. and Peng, C.H., 2000. Sequence straigraphy of Taipei Basin deposits: a preliminary study. Journal of the Geological Society of China 43(3), 497-520.
Ure, A. and Berrow, M., 1982. Chapter 3. The elemental constituents of soils. In: Bowen, H.J.M. (ed) Environmental Chemistry. Royal Society of Chemistry, London , 94-203.USEPA, 1996. Method 3052: Microwave Assisted Acid Digestion oof Silicious and Oranically Based Matrices. US Environmental Protection Agency, Washington, DC.
Van Herreweghe, S., Swennen, R., Vandecasteele, C., Cappuyus, V., 2003. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples Evironmental Pollution 122, 323.
Wallmann, K., Hennies, K., Konig, I., Petersen, W., Knauth, H.D., 1993. New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments. Limnology and Oceanography 38, 1803-1812.
Wang , C.Y. and Chen, C.H., 1990. The volcanology and fission track age dating of pyrolastic deposits in Tatun Volcani Group. Acta Geological Taiwanica 28, 1-30.
Webster, J.G., 1999. Arsenic. In: Marshall, C.P. and Fairbridge, R.W. (eds). Encyclopaedia of Geochemistry. Chapman and Hall, London, 21-22.
Wenzel, W,W., Kirchbaumer, N., Prohaska, T., Stingeder, E., Lombi, D.C., 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta 436, 309-323.
Welch, A.H., Westjohn, D.B., Helsel, D.R., Wanty, R.B., 2000. Arsenic in ground water of the United States. Ground Water 26, 333-347.
White, D.E., Hem, J.D., Waring, G.A., 1963. Data of Geochemistry, 6th ed. M. Fleischer, (Ed). Chapter F. Chemical Composition of Sub-Surface Waters. U.S. Geological Survey Professional Paper, 440-F.
Wilkie, J.E., Hering, J.G., 1996. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate-adsorbent ratios and co-occurring solutes. Colloid Surface 107, 97-124.
Wilkin, R.T., Ford, R.G., 2006. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chemical Geology 228, 156-174.
Wolthers, M., Charlet, L., van der Weijden, C.H., 2003. Arsenic sorption onto disordered mackinawite as a control on the mobility of arsenic in the ambient sulphidic environment. Journal de Physique IV 107, 1377-1380.
Xu, H., Allard, B. and Grimvall, A., 1991. Effects of acidification and natural organic materials on the mobility of arsenic in environment. Water Air and Soil Pollution 57-58, 269-278.
Xueqiu, W., 1998. Leaching of mobile forms of metals in overburden: development and application. Journal of Geochemical Exploration 61, 39-55.
Yan, X.-P., Kerrich, R., Hendry, M.J., 2000. Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewater from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada, Geochimica et Cosmochimica Acta 64, 2637-2648.
Yokoyama, T., Takahashi, Y., Tarutani, T., 1993. Simultaneous determination of arsenic and arsenious acids in geothermal water. Chemical Geology 103, 103-111.
Zeien, H., Brümmer, G.W., 1989. Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. (In German.) Mitteilgn. Deutsche Bodenkundliche Gesellschaft 59, 505-510.
Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry 19, 201-214.
指導教授 劉振宇、陳瑞昇
(Chen-wuing Liu、Jui-sheng Chen)
審核日期 2010-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明