博碩士論文 93642002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.125.171
姓名 吳文男(Wen-nan Wu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 菲律賓海板塊西緣聚合帶之孕震特性與大地應力
(Seismogenic Characteristics and Tectonic Stress along the Western Convergent Zone of the Philippine Sea Plate)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用格點搜索應力逆推法和阻尼應力逆推法配合全球及區域性地震網所提供的震源機制解,逆推菲律賓海板塊西緣的大地應力場。結果顯示,在琉球隱沒帶弧前位置的壓應力場有清楚分段且相對應於海桌山延伸方向有壓應力軸發生偏轉現象,同時,張應力場主要彰顯於整個琉球隱沒帶的弧後位置,暗示弧後張裂作用可能延伸至日本九州附近一帶。
整體菲律賓海板塊西緣應力場變化最為劇烈的位置莫過於琉球島弧的最南端,於此,壓應力軸從平行於板塊相對運動方向,突然大幅度轉成南北向,然後逐漸偏轉,直到進入台灣北部後,回復成原本的西北-東南方向,相同的偏轉現象也發生於張應力軸,推測此現象反應出菲律賓海板塊與歐亞板塊之間從隱沒過渡到碰撞的作用,因此本研究將此地區定義為「琉球-台灣應力轉換帶」(Ryukyu-Taiwan Stress Transition, RTST)。值得一提的是,此應力轉換帶的東界位於123°E經線,為加瓜海脊(Gugua ridge)向北延伸與琉球海溝交會之處,而其西界則與前人研究提出的後碰撞(post-collision)和弱碰撞(waning-collision)的分野位置吻合。
台灣碰撞帶的壓應力軸方向,主要反應板塊的擠壓作用且大致與前人所提出的扇形分佈吻合,然而以本研究更細緻的解析程度顯示,壓應力軸的變化並非由南而北逐漸呈順時鐘方向旋轉(典型的扇形分佈),而是局部性地沿著組成相對較為堅硬的鹿港磁力高區(Lukang Magnetization High, LMH)變化。因此,除了過去所認知的北港高區,本研究認為鹿港磁力高區對於區域應力場也有重要的影響,應於未來防災評估時納入考慮。
依據自由重力異常值的分佈將呂宋島弧區分成六個區塊,然後各別逆推全區和各區塊所對應的應力場。整體而言,呂宋島弧的壓應力軸方向與板塊相對運動方向是一致的。但若比較分區壓應力軸方向、理論板塊相對運動方向和全球定位系統水平位移可發現,除蘭嶼和宜蘭地區外,其餘區域的壓應力軸方向都與理論板塊運動方向一致。宜蘭區域的差異歸因於受沖繩海槽弧後擴張影響,然而在蘭嶼地區的差異,可能與東北-西南走向的花東斷層有關。根據前人研究推估,花東斷層的滑移量為8 mm/yr,然而不管是以理論板塊運動(71 mm/yr, N310°)或者以壓應力方向(N245°)為約制,花東斷層的位移量都應該遠高於8 mm/yr。因此,本研究推論蘭嶼地區的壓應力偏差可能肇因於下部地殼與上部地幔解耦合作用(decoupling)或者是因為尚有許多應變能尚未釋放,未來值得關注。另外,壓應力軸相對於板塊運動方向的偏轉於19.5°N以南便已消失,推測呂宋島弧與台灣之間的碰撞或許於此已開始發生,而張應力場主要於22°N以南才有觀測到,因此,此位置可能是從隱沒開始轉為碰撞的位置。
除此之外,本研究指認出十六組發震位置相近、規模大小接近、發生週期近似固定、波形相似且震源機制為逆衝型態的重複地震群,利用其重複出現的特質來研究琉球隱沒帶的孕震特性。各重複地震群的地震矩釋放率分佈雖然有點凌亂,不過大致而言,地震矩釋放率在北琉球島弧相對地較南琉球島弧偏高,而在琉球隱沒帶的中段和北段接近海溝的位置,其地震矩釋放率又相對高於弧前地區。這樣局部性的變化,或許與板塊介面的摩擦性質有關。另外,根據前人發表的重複地震的地震矩與滑移量經驗公式,本研究估算菲律賓海板塊相對於歐亞板塊的滑移量落在5.3與8.6 cm/yr之間,同時,配合理論板塊相對運動速度的估算,琉球隱沒帶的南段耦合強度是相對較強的。最後,基於大地震將會發生在遠離重複地震和重力異常低區位置的假設,並配合地形與震測資料所描繪的破碎帶與分叉斷層(spray fault)分佈,本研究提出在兩處位於琉球隱沒帶南部的地區將是地震潛能的危險高區。
摘要(英) To understand the convergent characteristics of the westernmost plate boundary between the Philippine Sea plate and Eurasian plate, we have calculated the stress states of plate motion by focal mechanisms. Cataloged by the Harvard centroid moment tensor solutions (Harvard CMT) and the Broadband Array in Taiwan (BATS) moment tensor, 251 focal mechanisms are used to determine the azimuths of the principal stress axes. We first used all the data to derive the mean stress tensor of the study area. The inversion result shows that the stress regime has a maximum compression along the direction of azimuth N299°. This result is consistent with the general direction of the rigid plate motion between the Philippine Sea and Eurasia plates in the study area. To understand the spatial variation of the regional stress pattern, we divided the study area into six sub-areas (blocks A to F) based on the feature of the free-air gravity anomaly. We compare the compressive directions obtained from the stress inversion with the plate motions calculated by the Euler pole and the Global Positioning System (GPS) analysis. As a result, the azimuth of the maximum stress axis, σ1, generally agrees with the directions of the theoretical plate motion and GPS velocity vectors except block C (Lanhsu region) and block F (Ilan plain region). The discrepancy of convergent direction near the Ilan plain region is probably caused by the rifting of the Okinawa Trough. The deviation of the σ1 azimuth in the Lanhsu region could be attributed to a southwestward extrusion of the Luzon Arc block between 21°N and 22°N whose northern boundary may be associated with the right-lateral NE–SW trending fault (i.e. Huatung Fault) along the Taitung Canyon. Comparing the σ1 stress patterns between block C and block D, great strain energy along HF may not be completely released yet. Alternatively, the upper crust of block C may significantly have decoupled from its lower crust or uppermost mantle.
We also applied an improved stress inversion method to a comprehensive dataset of earthquake focal mechanisms to depict the pattern of crustal stress along the western convergent boundary of the Philippine Sea plate. Our results indicate that the crustal stress along the Ryukyu forearc is segmented with boundaries at or near the places of seamount subduction, including the Tokara channel. An extensional stress regime is observed along the entire Ryukyu backarc, implying that backarc-rifting may have extended northward to Kyushu. A triangular area near the southernmost terminus of the Ryukyu arc is characterized by a unique stress signature. The eastern boundary of this Ryukyu-Taiwan Stress Transition (RTST) coincides with the 123°E meridian where the Gugua ridge intercepts the Ryukyu trench; whereas its western boundary agrees remarkably well with the border between the post-collision and waning-collision domains in northern Taiwan. The Taiwan collision zone is dominated by compression that rotates locally according to the structural configuration of the Lukang Magnetization High (LMH), suggesting that the LMH may be critical in controlling the local stress distribution. The stress signature of the Luzon arc–Taiwan collision reaches as far south as 19.5°N. The tectonic stress along the Manila trench–Luzon forearc is dominated by a complex regime of extension that cannot be explained by simple plate bending or in-slab membrane stress. Since this extensional regime is observed only south of ~22°N, it probably marks the northern limit of the contemporary boundary between the subduction along the Manila trench and the collision in Taiwan.
We used repeating earthquake sequences (i.e., a series of earthquakes occurring on the same patch of fault regularly with the similar seismic waveforms) to estimate the aseismic slip rate and seismic coupling along the Ryukyu arc-trench system. To detect similar events, we used the broadband seismograms from the National Research Institute for Earth Science and Disaster Prevention of Japan (NIED) from January 1, 1997 to December 31, 2009. The events that occurred in the Ryukyu subduction zone (23°-35°N, 120°-133°E) were sorted out for further analysis. A total of 10657 earthquake pairs with hypocenter separations less than 10 km were selected. The vertical-component seismograms were band-pass filtered with 1-8 Hz. Only stations with epicentral distance less than 400 km are used. For each pair, we then determine the maximum coefficients of cross-correlation for waveforms of the same station using the 40-second time window centered on the timing of the maximum amplitude (i.e., the direct S arrival). Repeating earthquakes are identified based on the cross-correlation coefficients, focal mechanisms and locations. Different pairs of repeating earthquakes are combined to form a group if they share an earthquake in common. As a result, we detected 16 sequences distributed along the Ryukyu forearc region. Most of those events show thrust faulting mechanism and may be linked to the relative plate motion between the overriding plate and subducting slab. Moment release rate for each repeating sequence is estimated by least-square fitting to a straight light of the upper envelope of the moment release plot. It appears to have large scatter in the distribution of moment release rate, but the overall trend is clear. To north of the Ryukyu arc, the moment release rate is relatively larger than the south. Interestingly, the moment release rate near the trench is apparently larger than that in the forearc region of the central and northern Ryukyu subduction zone. Such a locally spatial variation of moment release rate may be related to the frictional characteristics of the plate interface. Furthermore, on the basis of the empirical scaling relationship between seismic slip and seismic moment as well as the recurrences of similar events, the slip rates for repeating earthquake sequences are calculated and used to estimate the coefficients of seismic coupling. Consequently, the strength of seismic coupling is relatively strong in southern Ryukyu trench. Besides, according to the premises that the next great earthquake could probably occur in the regions of low gravity anomalies and no repeating earthquakes, two high potential seismic risk areas are identified in the Ryukyu subduction zone.
關鍵字(中) ★ 應力逆推
★ 菲律賓海板塊
★ 震源機制解
★ 重複地震
★ 隱沒帶
關鍵字(英) ★ Philippine Sea plate
★ stress inversion
★ focal mechanism
★ repeating earthquake
★ subduction zone
論文目次 Chapter 1 Introduction 1
1.1 Tectonic Background of the Study Area 1
1.2 Motivation and Objectives of the Study 5
1.3 Outline of the Thesis 6
Chapter 2 Plate Convergence at the Westernmost Philippine Sea Plate 8
2.1 Introduction 8
2.2 Method and Data 9
2.2.1 Stress Inversion Method 9
2.2.2 Earthquake Data 11
2.3 Theoretical Plate Motion and GPS Estimated Crustal Motion 14
2.4 Results of the Stress Inversion 16
2.4.1 Average Stress Pattern of Study Region 16
2.4.2 Variation of the Stress Field 17
2.5 Southwestward Migration of the Luzon Arc Block Between 21°N and 22°N 19
2.6 Conclusion 22
Chapter 3 Spatial Variation of the Crustal Stress Field along the Ryukyu-Taiwan-Luzon Convergent Boundary 23
3.1 Introduction 23
3.2 Data and Analysis 26
3.2.1 Earthquake Focal Mechanisms 26
3.2.2 Data Processing and Damped Stress Inversion 28
3.2.3 Checkerboard Tests 36
3.2.4 Sensitivity Tests 36
3.3 Stress Inversion Results and Interpretations 38
3.3.1 Stress Field along the Ryukyu Arc-trench System 40
3.3.2 Transition from Oblique Subduction to Collision near the Ryukyu–Taiwan Junction 43
3.3.3 Stress Variation in the Taiwan Collision Zone 45
3.3.4 Stress Field along the Manila trench–Luzon arc System 48
3.4 Discussion 51
3.4.1 Sudden Change in the Crustal Stress Regime across the Tokara Channel 51
3.4.2 Stress Segmentation and Subduction of Seamounts 52
3.4.3 Transition From Subduction to Collision Near Taiwan 55
3.4.4 Significance of Lukang Magnetization High (LMH) and Peikang Basement High (PH) 56
3.5 Conclusion 57
Chapter 4 Seismogenic Characteristics and Identification of Potential Seismic Source Zone along the Ryukyu Trench 59
4.1 Introduction 59
4.2 Repeating Earthquake Sequence 60
4.2.1 Data and Analysis 60
4.2.2 Repeating Earthquake on the Plate Boundary 61
4.2.3 Spatial Distribution of Moment Release Rate 64
4.2.4 Slip Rate and Seismic Coupling 65
4.3 High Seismic Risk Area 69
4.4 Analysis of Earthquake Swarm 70
4.5 Discussion and Conclusion 74
Chapter 5 Conclusions 76
5.1 Stress Field along the Ryukyu Arc-trench System 76
5.2 Stress Transition from Oblique Subduction to Collision near the Ryukyu–Taiwan Junction 76
5.3 Stress Variation in the Taiwan Collision Zone 77
5.4 Stress Field along the Manila trench–Luzon arc System 77
5.5 Seismogenic Characteristics and Potential Seismic Source Zone along the Ryukyu Trench 77
Reference 79
Appendix A Checkerboard Tests for Damped Stress Inversion Method 90
Appendix B Sensitivity Tests 96
Appendix C Waveforms and Cross-correction Coefficients of Repeating Earthquake Sequence 104
Appendix D Source Parameters of Repeating Earthquakes 110
參考文獻 Abers, G.A., and J.W. Gephart (2001), Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California, J. Geophys. Res., 106, 26523-26540.
Ando, M. (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough. Japan, Tectonophysics, 27, 119-140.
Ando, M., et al. (2009), Is the Ryukyu subduction zone in Japan coupled or decoupled? The necessity of seafloor crustal deformation observation, Earth Planets and Space, 61, 1031-1039.
Angelier, J. (1984), Tectonic analysis of fault slip data sets, J. Geophys. Res., 89, 5835-5848.
Angelier, J. (1990), Geodynamic evolution of the eastern Eurasian margin, Tectonophysics, 183, 362pp.
Angelier, J., (1989), From orientation to magnitudes in paleostress determination using fault slip data, J. struct. Geol., 11, 37-50, 1989.
Angelier, J., E. Barrier, and H.-T. Chu (1986), Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan, Tectonophysics, 125, 161-178.
Aoki, Y., and C. H. Scholz (2003), Vertical deformation of the Japanese islands, J. Geophys. Res., 108, doi:10.1029/2002JB002129.
Argus, D. F., and R. G. Gordon (1991), No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 2039-2042.
Arnold, R., and J. Townend (2007), A Bayesian approach to estimating tectonic stress from seismological data, Geophys. J. Int., 170, 1336-1356.
Astiz, L., et al. (1988), Large intermediate-depth earthquakes and the subduction process, Phys. Earth and Planet. Interi., 53, 80-164.
Barrier, E., and J. Angelier (1986), Active collision in eastern Taiwan: The Coastal Range, Tectonophysics, 125, 39-72.
Bautista, B.C., M.L.P. Bautista, K. Oike, F.T. Wu, and R.S. Puononbayan (2001), A new insight on the geometry of subducting slabs in northern Luzon, Philippine, Tectonophysics, 339, 3279-310.
Biq, C.-C. (1972), Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China, 15, 65-75.
Chang, C.-P., T.-Y. Chang, J. Angelier, H. Kao, J.-C. Lee, and S.-B. Yu (2003), Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observations and tectonic data, Earth Planet. Sci. Lett., 214, 115-127.
Chen, C.-C., and C.-S. Chen (2002), Sanyi-Puli conductivity anomaly in NW Taiwan and its implication for the tectonics of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 29, doi: 10.1029/2001GL013890.
Chen, K. H., et al. (2008), Characteristic repeating earthquakes in an arc-continent collision boundary zone: The Chihshang fault of eastern Taiwan, Earth Planet. Sci. Lett., 276, 262-272.
Cheng, W.-B., C. Wang, C.-T. Shyu, and T.-C. Shin, A three dimensional Vp model of the southeastern Taiwan area and its tectonic implications, Terr. Atmos. Oceanic Sci., 9, 425-487, 1998.
Chiao, L.-Y. (1993), Strain segmentation and lateral membrane deformation rate of the subducted Ryukyu slab, Island Arc, 2, 94-103.
Chiao, L.-Y., H. Kao, S. Lallemand, and C.-S. Liu (2001), An alternative interpretation for slip vector residual of subduction interface earthquakes: A case study in the southernmost Ryukyu slab, Tectonophysics, 333, 123-134.
Chou, H.-C., B.-Y. Kuo, S.-H. Hung, L.-Y. Chiao, D. Zhao, and Y.-M. Wu (2006), The Taiwan-Ryukyu subduction-collision complex: Folding of a viscoelastic slab and the double seismic zone, J. Geophys. Res., 111, doi:10.1029/2005JB003822.
Christensen, D. H., and L. J. Ruff (1988), Seismic coupling and outer rise earthquakes, J. Geophys. Res., 93, 13,421-413,444.
Christova, C. (2004), Stress field in the Ryukyu-Kyushu Wadati-Benioff zone by inversion of earthquake focal mechanisms, Tectonophysics, 384, 175-189.
Deffontaines, B., J.-C. Lee, J. Angelier, J. Carvalho, and J. P. Rudant (1994), New geomorphic data on the active Taiwan orogen: A multisource approach, J. Geophys. Res., 99, 20243-20266.
Demets, C., et al. (1994), Effect of Recent Revisions to the Geomagnetic Reversal Time-Scale on Estimates of Current Plate Motions, Geophys. Res. Lett., 21, 2191-2194.
Deschamps, A. E., S. E. Lallemand, and J.-Y. Collot (1998), A detailed study of the Gagua Ridge: A fracture zone uplifted during a plate reorganisation in the Mid-Eocene, Mar. Geophys. Res., 20, 403-423.
Dominguez, S., S. Lallemand, J. Malavieille, and P. Schnürle (1998), Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments, Mar. Geophys. Res., 20, 383-402.
Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Phys. Earth and Planet. Interi., 86, 2825-2852.
El-Fiky, G. S., et al. (1999), Crustal deformation and interplate coupling in the Shikoku district, Japan, as seen from continuous GPS observations, Tectonophysics, 314, 387-399.
Engdahl, E. R., and A. Villaseñor (2002), Global Seismicity: 1900-1999, in International Handbook of Earthquake and Engineering Seismology, edited by W. H. K. Lee, et al., pp. 656-690, Academic Press.
Engdahl, E. R., et al. (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Amer., 88, 722-743.
Font, Y., and S. Lallemand (2009), Subducting oceanic high causes compressional faulting in southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and reflection/refraction seismic data, Tectonophysics, 466, 255-267.
Fournier, M., O. Fabbri, J. Angelier, and J.-P. Cadet (2001), Regional seismicity and on-land deformation in the Ryukyu arc: Implications for the kinematics of opening of the Okinawa Trough, J. Geophys. Res., 106, 13,751-13,768.
Frohlich, C. (2001), Display and quantitative assessment of distributions of earthquake focal mechanisms, Geophys. J. Int., 144, 300 - 308.
Frohlich, C., and S. D. Davis (1999), How well constrained are well-constrained T, B, and P axes in moment tensor catalogs?, J. Geophys. Res., 104, 4901-4910.
Fuh, S.-C., C.-S. Liu, N. Lundberg, and D. Reed (1997), Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes, Tectonophysics, 274, 25-39.
Fukuyama, E., and D. S. Dreger (2000), Performance of an automated moment tensor determination system for the future "Tokai" earthquake, Earth Planets Space, 52, 383-392.
Galgana, G., M. Hamburger, R. McCaffrey, E. Corpuz, and Q. Chen (2007), Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms, Tectonophysics, 432, 63-87.
Gephart, J. W. (1990), FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. and Geosci., 16, 953-989.
Gephart, J. W., and D. W. Forsyth (1984), An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320.
Gillard, D., M.Wyss, and P. Okubo (1996), Type of faulting and orientation of stress and strain as a function of space and time in Kilauea’s south flank, Hawaii, J. Geophys. Res., 101, 16025-16042.
Gripp, A. E., and R. G. Gordon (2002), Young tracks of hotspots and current plate velocities, Geophys. J. Int., 150, 321-361.
Hardebeck, J. L., and A. J. Michael (2006), Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence, J. Geophys. Res., 111, 10.1029/2005JB004144.
Hardebeck, J. L., and E. Hauksson (2001), Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res., 106, 21859-21882.
Heki, S., et al. (1999), The Amurian Plate motion and current plate kinematics in eastern Asia, J. Geophys. Res., 104, 29147-29155.
Helffrich, G. R. (1997), How good are routinely determined focal mechanisms? Empirical statistics based on a comparison of Harvard, USGS and ERI moment tensors, Geophys. J. Int., 131, 741-750.
Henry, P., et al. (2001), Transient and permanent deformation of central Japan estimated by GPS 1. Interseismic loading and subduction kinematics, Earth and Planet. Sci. Lett., 184, 443-453.
Ho, C. S. (1986), A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16.
Hsu, S.-K. (2001), Subduction/collision complexities in the Taiwan-Ryukyu junction area: tectonics of the northwestern corner of the Philippine Sea plate, Terr. Atmos. Oceanic Sci., Suppl. Issue, 209-230.
Hsu, S.-K., and J.-C. Sibuet (2005), Earthquake Off Japan Could Generate Strong Tsunami, Eos, 86, 169-170.
Hsu, S.-K., and J.-C. Sibuet (1995), Is Taiwan the result of arc-continent or arc-arc collision? Earth Planet. Sci. Lett., 136, 315-324.
Hsu, S.-K., et al. (2010), Megasplay fault and forearc deformation in Ryukyu subduction zone, paper presented at EGU General Assembly 2010.
Hsu, S.-K., J.-C. Sibuet, S. Monti, C.-T. Shyu, and C.-S. Liu (1996), Transition between the Okinawa trough backarc extension and the Taiwan collision: new insights on the southernmost Ryukyu subduction zone, Mar. Geophys. Res., 18, 163–187.
Hsu, S.-K., Y.-C. Yeh, C.-L. Lo, A. T. Lin, and W.-B. Doo (2008), Link between crustal magnetization and earthquakes in Taiwan, Terr. Atmos. Oceanic Sci., 19, 445-450.
Hsu, Y.-J., S.-B. Yu, M. Simons, L.-C. Kuo, and H.-Y. Chen (2009), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18..
Hu, J.-C., and J. Angelier (2004), Stress permutations: 3-D distinct element analysis accounts for a common phenomenon in brittle tectonics, J. Geophys. Res., 109, doi:10.1029/2003JB002616.
Hu, J.-C., J. Angelier, J.-C. Lee, H.-T. Chu, and D. Byrne (1996), Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling, Tectonophysics, 255, 243-268.
Hu, J.-C., S.-B. Yu, and J. Angelier (2001), Active deformation of Taiwan from GPS measurements and numerical simulations, J. Geophys. Res., 106, 2265-2280.
Hu, J.-C., S.-B. Yu, H.-T. Chu, and J. Angelier (2002), Transition tectonics of northern Taiwan induced by convergence and trench retreat, Geol. Soc. Am. Special Paper, 358, 149-162.
Huang, C.-Y., P. B. Yuan, C.-W. Lin, T. K. Wang, and C.-P. Chang (2000), Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals, and Corsica, Tectonophysics, 325, 1-21.
Huchon, P., E. Barrier, J.-C. De Bremaecker, and J. Angelier (1986), Collision and stress trajectories in Taiwan: a finite element model, Tectonophysics, 125, 179-191.
Igarashi, T., et al. (2003), Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone, J. Geophys., 108, 10.1029/2002JB001920.
Ishihara, T., and K. Koda (2007), Variation of crustal thickness in the Philippine Sea deduced from three-dimensional gravity modeling, Island Arc, 16, 322-237.
Kagan, Y. Y. (2003), Accuracy of modern global earthquake catalogs, Phys. Earth and Planet. Interi., 135, 173-209.
Kagan, Y. Y. (2007), Simplified algorithms for calculating double-couple rotation, Geophys. J. Int., 171, 411-418.
Kao, H., and J. Angelier (2001), Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional collision, Bull. Seism. Soc. Am., 91, 1028-1040.
Kao, H., and P.-R. Jian (2001), Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophysics, 333, 179-198.
Kao, H., and W.-P. Chen (1991), Earthquakes along the Ryukyu-Kyushu arc: Strain segmentation, lateral compression, and the thermomechanical state of the plate interface, J. Geophys. Res., 96, 21,443-21,485.
Kao, H., G.-C. Huang, and C.-S. Liu (2000), Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: Constraints from bathymetry and seismic observations, J. Geophys. Res., 105, 3059-3080.
Kao, H., P.-R. Jian, K.-F. Ma, B.-S. Huang, and C.-C. Liu (1998a), Moment tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619-3622.
Kao, H., S.-S. J. Shen, and K.-F. Ma (1998b), Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region, J. Geophys. Res., 103, 7211-7229.
Kimura, H., et al. (2006), Repeating earthquake activities associated with the Philippine Sea plate subduction in the Kanto district, central Japan: A new plate configuration revealed by interplate aseismic slips, Tectonophysics, 417, 101-118.
Kimura, H., et al. (2009), Subduction process of the Philippine Sea Plate off the Kanto district, central Japan, as revealed by plate structure and repeating earthquakes, Tectonophysics, 472, 18-27.
Kreemer, C., et al. (2003), An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154, 8-34.
Kubo, A., and E. Fukuyama (2003), Stress field along the Ryukyu arc and the Okinawa trough inferred from moment tensors of shallow earthquakes, Earth Planet. Sci. Lett., 210, 305-316.
Kubo, A., E. Fukuyama, H. Kawai, and K. Nonomura (2002), NIED seismic moment tensor catalogue for regional earthquakes around Japan: quality test and application, Tectonophysics, 356, 23-48.
Kuramoto, S., and K. Konishi (1989), The southwest Ryukyu arc is a migrating microplate (forearc sliver), Tectonophysics, 163, 75-91.
Lallemand, S., C.-S. Liu, and Y. Font (1997), A tear fault boundary between the Taiwan orogen and the Ryukyu subduction zone, Tectonophysics, 274, 171-190.
Lallemand, S., C.-S. Liu, S. Dominguez, P. Schnürle, J. Malavieille, and the ACT Scientific Crew (1999), Trench-parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strain partition caused by oblique convergence, Tectonics, 18, 231-247.
Lallemand, S., Y. Font, H. Bijwaard, and H. Kao (2001), New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335, 229-253.
Letouzey, J., and M. Kimura (1985), Okinawa Trough genesis: structure and evolution of the back arc basin developed in a continent, Marine Petrology Geology, 2, 111- 130.
Lin, A. T., and A. B. Watts (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107, doi:10.1029/2001JB000669.
Lin, C.-H. (2001), Taiwan earthquake: a proposed stress-focuing, heel shaped model, Bull. Seism. Soc. Am., 91, 1053-1061.
Lin, C.-H. (2000), Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonphysics, 324, 189-210.
Lisle, R.J., New method of estimating regional stress orientations: applications to focal mechanism data of recent British earthquakes, Geophys. J. Int., 110, 276-282, 1992.
Liu, Z., et al. (2010), Estimation of interplate coupling in the Nankai trough, Japan using GPS data from 1996 to 2006, Geophys. J. Int., 181, 1313-1328.
Llenos, A. L., and J. J. McGuire (2007), Influence of fore-arc structure on the extent of great subduction zone earthquakes, J. Geophys. Res., 112, doi:10.1029/2007JB004944.
Lu, Z., Wyss, M. and Pulpan, H. (1997), Details of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res., 102, 5385-5402.
Lundberg N., D. Reed; C.-S. Liu and J. L. Jr (1997), Forearc-basin closure and arc accretion in the submarine suture zone south Taiwan, Tectonphysics, 274, 5-23.
Matsubara, M., et al. (2005), Plate boundary slip associated with the 2003 Off-Tokachi earthquake based on small repeating earthquake data, Geophys. Res. Lett., 32, doi:10.1029/2004GL022310.
Mazzotti, S., et al. (2003), Distribution of the Pacific/North America motion in the Queen Charlotte Islands-S. Alaska plate boundary zone, Geophys. Res. Lett., 30, doi:10.1029/2003GL017586.
McCabe, R. (1984), Implications of paleomagnetic data on the collision related bending of island arcs, Tectonics, 3, 409-428.
McCaffrey, R. (1997), Statistical significance of the seismic coupling coefficient, Bull. Seism. Soc. Am., 87, 1069-1073.
McKenzie, D. P. (1969), The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seism. Soc. Am., 59, 591-601.
Michael, A. J. (1984), Determination of stress from slip data: Faults and folds, J. Geophys. Res., 89, 11517-11526.
Michael, A. J. (1987), Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92, 357-369.
Michael, A. J. (1991), Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results, J. Geophys. Res., 96, 6303-6319.
Nadeau, R. M., and L. R. Johnson (1998), Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Amer., 88, 790-814.
Nakamura, M. (2004), Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data, Earth Planet. Sci. Lett., 217, 389-398.
Nakamura, M. (2009), Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami, Geophys. Res. Lett., 36, doi:10.1029/2009GL039730.
Nakamura, M., et al. (2008), Observation of Ocean Bottom Crustal Deformation in Ryukyu trench, paper presented at Seventh Japan-Taiwan International Workshop on Hydrological and Geochemical Research for Earthquake Prediction.
Nakazawa, T., A. Nishimura, Y. Iryu, T. Yamada, H. Shibasaki, and S. Shiokawa (2008), Rapid subsidence of the Kikai seamount inferred from drowned Pleistocene coral limestone: Implication for subduction of the Amami Plateau, northern Philippine Sea, Marine Geology, 247, 35-45.
Nishimura, S., and M. Hashimoto (2006), A model with rigid rotations and slip deficits for the GPS-derived velocity field in Southwest Japan, Tectonophysics, 421, 187-207.
Nishimura, S., et al. (2004), A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc, Phys. Earth and Planet. Interi., 142, 185-203.
Nishizawa, A., et al. (2007), Variation in crustal structure along the Kyushu-Palau Ridge at 15-21N on the Philippine Sea plate based on seismic refraction profiles, Earth Planets Space, 59, e17-e20.
Ota, Y., and N. Hori (1980), Late Quaternary tectonic movement of the Ryukyu islands, Japan (in Japanese), Quat. Res., 18, 221-240.
Pacheco, J. F., et al. (1993), Nature of seismic coupling along simple plate boundaries of the subduction type, J. Geophys. Res., 98, 14133-14159.
Park, J.-O., et al. (2009), Seismotectonic implications of the Kyushu-Palau ridge subducting beneath the westernmost Nankai forearc, Earth Planets Space, 61, 1013-1018.
Peterson, E. T., and T. Seno (1984), Factors affecting seismic moment release rates in subduction zones, J. Geophys. Res., 89, 10233-10248.
Pezzopane, S. K., and S. G. Wesnousky (1989), Large earthquakes and crustal deformation near Taiwan, J. Geophys. Res., 94, 7250-7264.
Rau, R.-J., and F. T. Wu (1998), Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, Terr. Atmos. Oceanic Sci., 9, 755-778.
Rau, R.-J., F. T. Wu, and T.-C. Shin (1996), Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seism. Soc. Am., 86, 1270-1283.
Research group for active faults in Japan (1991), Active faults in Japan: Sheet maps and inventories, Tokyo Univ. Press, Tokyo, 437 pp.
Sella, G. F., et al. (2002), REVEL: A model for Recent plate velocities from space geodesy, Journal of Geophysical Research-Solid Earth, 107, 31.
Seno, T. (1977), The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42, 209-229.
Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17,941-17,948.
Shimazaki, K., and T. Nakata (1980), Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett., 7, 279-282.
Shiono, K., T. Mikumo, and Y. Ishikawa (1980), Tectonics of the Kyushu-Ryukyu Arc as evidenced from seismicity and focal mechanism of shallow to intermediate-depth earthquakes, J. Phys. Earth, 28, 17-43.
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, doi:10.1029/2004JB003251.
Sibuet, J. C., et al. (1987), Back arc extension in the Okinawa Trough, J. Geophys. Res., 92, 14041-14063.
Sibuet, J.-C., and S.-K. Hsu (1997), Geodynamics of the Taiwan arc-arc collision, Tectonophysics, 274, 221-251.
Sibuet, J.-C., D. B., S.-K. Hsu, N. Thareau, J. P. Le Formal, C.-S. Liu, and A. Party (1998), Okinawa trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res., 103, 30245-30267.
Sipkin, S.A. (1986), Estimation of earthquake source parameters by the inversion of waveform data: global seismicity, 1981-1983, Bull. Seism. Soc. Am., 76, 1515-1541.
Song T. A., and S. Mark (2003), Larege trench-parallel gravity variations predict seismogenic behavior in subduction zones, Science, 301, 630-633.
Spicak, A., et al. (2009), Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone, Geophys. J. Int., 179, 1301-1312.
Strobach, K. (1973), Curvature of island arcs and plate tectonics, J. Geophys., 39, 819-831.
Suppe, J. (1984), Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33.
Tang, J.-C., and A. I. Chemenda (2000), Numerical modelling of arc–continent collision: application to Taiwan, Tectonophysics, 325, 23-42.
Terakawa, T., and M. Matsu'ura (2008), CMT data inversion using a Bayesian information criterion to estimate seismogenic stress fields, Geophys. J. Int., 172, 674-685.
Tsai, Y.-B., T. Teng, J.-M. Chiu, and H.-L. Liu (1977), Tectonic implications of the seismicity in the Taiwan region, Mem. Geol. Soc. China, 2, 13-41., Mem. Geol. Soc. China, 2, 13-41.
Uchida, N., et al. (2006), Small repeating earthquakes and interplate creep around the 2005 Miyagi-oki earthquake (M=7.2), Earth Planets and Space, 58, 1577-1580.
Uchida, N., et al. (2009), What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone, Earth Planet. Sci. Lett., 283, 111-121.
Utsu, T. (1989), Table of destructive earthquakes in the world, http://iisee.kenken.go.jp/utsu/, edited.
Viallon, C., P. Huchon, and E. Barrier (1986), Opening of the Okinawa basin and collision in Taiwan: a retreating trench model with lateral anchoring, Earth Planet. Sci. Lett., 80, 145-155.
Vidale, J. E., and P. M. Shearer (2006), A survey of 71 earthquake bursts across southern
California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers, J. Geophys. Res., 111, doi:10.1029/2005JB004034.
Vidale, J. E., et al. (2006), Crustal earthquake bursts in California and Japan: Their patterns and relation to volcanoes, Geophys. Res. Lett., 33, 5. doi:10.1029/2006GL027723
Wallace, L. M., M. R. McCaffrey, J. Beavan., and S. Ellis (2005), Rapid microplate rotations and backarc rifting at the transition between collision and subduction, Geology, 33, 857-860.
Wallace, L. M., S. Ellis, and P. Mann (2009b), Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings, Geochem. Geophys. Geosyst., 10, 10.1029/2008GC002220.
Wallace, L. M., S. Ellis, K. Miyao, S. Iura, J. Beavan., and J. Goto (2009a), Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision, Geology, 37, 143-146.
Wang, K., I. Wada, and Y. Ishikawa (2004), Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes, J. Geophys. Res., 109, 10.1029/2003JB002888
Wang, Z., et al. (2008), P-wave velocity and gradient images beneath the Okinawa Trough, Tectonophysics, 455, 1-13.
Wells, R. E., et al. (2003), Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion?, J. Geophys. Res., 108, doi:10.1029/2002JB002072.
Wessel, P., and W. M. F. Smith (1998), New improved version of generic mapping tools released, EOS Trans. AGU, 79, 579.
Wu, F. T. (1978), Recent tectonics of Taiwan, J. Phys. Earth, 26 (Suppl.), S265-S299.
Wu, F. T., W.-T. Liang, J.-C. Lee, H. Benz, and A. Villasenor (2009a), A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries, J. Geophys. Res., 114, doi:10.1029/2008JB005950.
Wu, W.-N., S.-K. Hsu, C.-L. Lo, H.-W. Chen, and K.-F. Ma (2009b), Plate convergence at the westernmost Philippine Sea Plate, Tectonophysics, 466, 162-169.
Wu, W.-N., H. Kao, S.-K. Hsu, C.-L. Lo, and H.-W. Chen (2010), Spatial variation of the Crustal stress field along the Ryukyu-Taiwan-Luzon convergent boundary, J. Geophys. Res, in press.
Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac (2007), Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, doi:10.1029/2007JB004983.
Wu, Y.-M., L. Zhao, C.-H. Chang, and Y.-J. Hsu (2008), Focal mechanism determination in Taiwan by genetic algorithm, Bull. Seism. Soc. Am., 98, 651-661.
Xu, J., and Y. Kono (2002), Geometry of slab, intraslab stressfield and its tectonic implication in the Nankai trough, Japan, Earth Planets Space, 54, 733-742.
Xu, P.L. (2004), Determination of regional stress tensors from fault-slip data, Geophys. J. Int., 157, 1316-1330.
Yeh, Y.-H., E. Barrier, C.-H. Lin, and J. Angelier (1991), Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280.
Yin, Z.-M., and G. Ranalli (1993), Determination of tectonic stress field from fault slip data: towards a probabilistic model, J. Geophys. Res., 98, 12165-12176.
Yu, S.-B. and Kuo, L.-C. (1999), GPS observation of crustal deformation in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-923.
Yu, S.-B., Chen, H.-Y. and Kuo, L.-C. (1997), Velocity field of GPS stations in the Taiwan area, Tectonphysics, 274, 41-59.
Zang, S., et al. (2002), Motion of the Philippine Sea plate consistent with NUVEL-1A model, Geophys. J. Int., 150, 809-819.
Zhao, D. P., et al. (2009), Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc, Tectonophysics, 467, 89-106.
Zoback, M. L. (1992), First and second order patterns of stress in the lithosphere: the world stress map project, J. Geophys. Res., 97, 11703-1172.
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2010-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明