博碩士論文 975203046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.149.25.73
姓名 曹伯仲(Bo-Jhong Tsao)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 3GPP長程演進通訊系統蜂巢搜尋
(Cell Search for 3GPP LTE Communication System)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) LTE(long term evolution)無線通訊系統下行採用OFDMA 系統,在此系統中使用了主要同步訊號(primary synchronization signal)與次要同步訊號(secondary synchronization signal)來處理同步與蜂巢確認的問題。然而,OFDM/ OFDMA 系統對於時間和頻率的同步誤差很敏感。此外,當用戶設備(user equipment)在蜂巢系統(cellular system)下運作,由於LTE 的蜂巢身份(cell-ID)有504 個,因此它需要快速的與所服務的基地台建立連接,且要確定所工作的區段(sector)與蜂巢身份(cell-ID)。本篇論文提出三個步驟:第一步,使用延遲自相關找出訊框時序(frame timing)與主要同步訊號,再以此時序開始做小數點時間與頻率估測,在小數點頻率估測中我們利用帄均法來改善小數點頻率的準確度。第二步,我們利用訊號相位差的方式以同步訊號來偵測區段與整數頻率偏移,實驗結果顯示可以有效抵抗通道效應與符號時序的誤差。第三步,蜂巢身份確認。此研究所提出的演算法,是利用相位差的方式來確認區段與蜂巢身份,此方法可以有效的抵抗通道效應,且與匹配濾波器法比較,此演算法能有較高的穩定度。
摘要(英) LTE(long term evolution)wireless communication downlink system uses OFDMA. This system uses the primary synchronization signal (P-SCH) and the secondary synchronization signal(S-SCH) for synchronization and cell identities solving problems. However, it is well known that OFDM systems are sensitive to time and frequency synchronization error. Hence we require accurate synchronization techniques. Furthermore, user equipment (UE) operates in a cellular system, and there are 504 cell-ID in LTE, it needs to establish connection as fast as possible with the best serving base station, i.e. to identify the operating sector and cell. The proposed cell search procedure in this paper contains three steps: The first step, using the delay auto-correlation to find frame timing and the primary synchronization signal, and then use this sequence to start estimate the symbol timing and fractional frequency. And in the estimation we use the average method to improve the accuracy of fractional frequency. The second step, we use method of the phase difference between each signal with synchronization to confirm sector and the integer frequency. And the outcome shows that it can effectively withstand the error of channel effect and symbol timing. The third step, confirm cell-ID.
The proposed algorithm confirms the sector and cell ID by phase difference, it can resist the channel effect, and it is more stabilize than matched filter.
關鍵字(中) ★ 同步
★ 蜂巢搜尋
★ 相位差分
★ 匹配濾波器
關鍵字(英) ★ synchronization
★ cell search
★ phase difference
★ matched filter
論文目次 目錄.....................................................iv
圖目錄...................................................vi
表目錄...................................................ix
第一章 緒論...............................................1
1.1簡介...................................................1
1.2研究動機...............................................2
第二章 Long Term Evolution系統介紹........................4
2.1 單載波分頻多工存取介紹................................4
2.2 正交分頻多工存技術....................................7
2.2.1 保護區間與循環前置對ISI與ICI的影響..................9
2.2.2 正交分頻多工存取技術...............................15
2.3 Long Term Evolution訊框系統..........................17
2.3.1 訊框資料型態.......................................18
2.3.2 主要同步訊號與次要同步訊號.........................21
第三章 蜂巢搜尋流程與演算法..............................30
3.1 訊框時序估測.........................................32
3.2 以平均法改良ML小數點頻率之效能.......................34
3.3 區段與整數頻率偏移估測...............................37
3.4 蜂巢身份辨識.........................................39
第四章 瑞雷多重路徑衰落通道環境下的蜂巢辨識與演算法......42
4.1 瑞雷多重路徑衰弱通道對訊框時序的影響.................42
4.2 ML平均法在瑞雷多重路徑衰弱通道之效能.................44
4.3 差分方法檢測區段與整數頻率偏移估測...................47
4.3.1 實驗討論...........................................47
4.3.2 ML平均法對整數頻率偏移估測的影響...................53
4.4 差分方法檢測蜂巢身份.................................56
4.4.1 同調檢測與非同調檢測...............................56
4.4.2 實驗結果...........................................57
第五章 結論與未來發展....................................61
參考文獻.................................................62
附錄 通道模型............................................65
A.1 衰落效應.............................................65
A.1.1 大範圍衰落與小範圍衰落.............................65
A.1.2 多路徑效應與都卜勒偏移.............................67
A.1.3 平坦衰落...........................................69
A.1.4 頻率選擇性衰落.....................................70
A.1.5 快速衰落...........................................70
A.1.6 緩慢衰落...........................................71
A.2 Jakes衰落通道模型....................................72
A.3 同步問題.............................................77
參考文獻 [1] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Aretch House Univ. Personal Communications Lib., 2000.
[2] Erik Dahlman, Stefan Parkvall, Johan Skold, Per Beming, 3G Evolution HSPA and LTE for Mobile Broadband, Academic Press., 2007.
[3] A. Peled and Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” IEEE International Conference on ICASSP '80, vol.3, pp. 964-967, 1980.
[4] 3GPP TR 25.814 V7.1.0 (2006-09) (Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (E-UTRA))
[5] 3GPP TSG-RAN WG1 #52 R1-080873, “On the design of DwPTS,” Ericsson, February 2008.
[6] 3GPP TSG RAN WG1 meeting #52 R1-080799, “Sounding reference signals in UpPTS for TDD,” CATT, CMCC, RITT, February 2008
[7] 3GPP, TS 36.211 (V8.5.0), “Physical channels and modulation,” Mar. 2009.
[8] R. C. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IRE Transactions on Information Theory, vol. IT-8, no. 6, pp. 381-382, October 1961.
[9] R. L. Frank and S. A. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IRE Transactions on Information Theory, vol. 8, pp. 381-382, October 1962.
[10] David C.CHU, “Polyphase codes with good periodic correlation properties,” IEEE Transactions on Information Theory, pp. 53 1-532, July 1972
[11] R1-072321, Huawei, “P-SCH sequences,” Kobe, Japan, May 7-11, 2007
[12] R1-071469 Texas Instruments, “Primary SCH code design and performance,” St. Julian’s, Malta, 26-30 March, 2007
[13] J.-J van de Beek, M. Sandell, and P.O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Transactions on Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.
[14] I. Kim, Y. Han, Y. Kim, and S. C. Bang, “Sequence hopping cell search scheme for OFDM cellular systems,” IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1483 - 1489. May 2008.
[15] I. Kim, Y. Han, and H. K. Chung, “An efficient synchronization signal structure for OFDM-Based cellular systems,” IEEE Transactions on Wireless Communications, vol. 9, no. 1, 1536-1276, January 2010.
[16] K. Manolakis, D. M. Gutierrez Estevez, V. Jungnickel, W. Xu and C. Drewes, “A closed concept for synchronization and cell search in 3GPP LTE systems,” IEEE Wireless Communications and Networking Conference, pp. 1-6, April 2009.J.-I.
[17] J.-S. Kim, J.-S. and H.-J. Roh, H.-J. Choi, “SSS detection method for initial cell search in 3GPP LTE FDD/TDD dual mode receiver”. 9th International Symposium on Communications and Information Technology, 28-30, pp. 199-20, September 2009.
[18] J.-C. Lin, “Coarse frequency offset acquisition via subcarrier differential detection for OFDM communications,” IEEE Transactions on Communications, vol. 54, no. 8, pp. 1415-1426, August 2006.
[19] J.-C. Lin, “Frequency offset estimation by differentially coherent frequency error characterization for OFDM wireless communications,” IEEE International Conference Communications, vol. 4, pp. 2387-2391, June 2004.
[20] J.-C. Lin, A. Chen and V. Ma, “Maximum-likelihood fine frame timing and frequency offset estimation for OFDM communication over a rayleigh fading Channel,” IEEE Global Telecommunications Conference, vol. 1, pp. 686-690, November 2002.
[21] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[22] A. J. Goldsmith, Wireless Communications. New York: Cambridge University Press, 2005.
[23] 3GPP, TR 25.943 (V8.0.0), “Deployment aspects,” December 2008.
[24] Y. Li and X. Huang, “The simulation of independent rayleigh faders,” IEEE Transactions on Communications, vol. 50, no. 9, pp. 1503-1514, Sep. 2002.
[25] F. Daffara, and A. Chouly, “Maximum likelihood frequency detectors for orthogonal multicarrier systems,” IEEE International Conference on Communications, vol. 2, pp. 766-771, May, 1993.
[26] B. G. Lee, D. Park, H. Seo, Wireless Communications Resource Management, John Wiley & Sons Pte Ltd, 2009.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2010-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明