博碩士論文 975202106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.222.20.250
姓名 黃延瑋(Yen-wei Hwang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用車輛分類建構車載網路上的虛擬骨幹
(Classification based Virtual Backbone Construction in Vehicular Ad-hoc Networks)
相關論文
★  Dynamic Overlay Construction for Mobile Target Detection in Wireless Sensor Networks★ 車輛導航的簡易繞路策略
★ 使用傳送端電壓改善定位★ Why Topology-based Broadcast Algorithms Do Not Work Well in Heterogeneous Wireless Networks?
★ 針對移動性目標物的有效率無線感測網路★ 適用於無線隨意網路中以關節點為基礎的分散式拓樸控制方法
★ A Review of Existing Web Frameworks★ 將感測網路切割成貪婪區塊的分散式演算法
★ 無線網路上Range-free的距離測量★ Inferring Floor Plan from Trajectories
★ An Indoor Collaborative Pedestrian Dead Reckoning System★ Dynamic Content Adjustment In Mobile Ad Hoc Networks
★ 以影像為基礎的定位系統★ 大範圍無線感測網路下分散式資料壓縮收集演算法
★ 車用WiFi網路中的碰撞分析★ Exploring Spatial-Temporal Cloaking Against Correlation Attacks for Location-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 車載網路可用來疏通交通壅塞以及提供適地性的服務,這些服務為了要在車載網路上達到快速的訊息傳送,通常會使用到虛擬骨幹的作法。本篇論文提出一個新的以路線依從性與時間可預測性來分類車輛,並以此為基礎來建構車載網路的虛擬骨幹方法- Classification based Virtual Backbone Construction in Vehicular Ad-hoc Networks。
此方法在推廣初期能以較少的建構成本來覆蓋大多數的車輛,使駕駛者有動機來裝設車載網路的通訊設備,快速的達到車載網路的普及。使用交通模擬工具STRAW 與網路模擬工具JiST/SWANS,載入美國人口普查局TIGER 系統的舊金山市街道資料,模擬利用幹線公車來建構虛擬骨幹,可以提供比目前其他相關研究所使用協定更好的服務效率,若搭配佈建在十字路口的路側單元,可提供更可靠與更長時間的服務。
經由模擬檢驗可知利用幹線公車來建構虛擬骨幹的方式,可以用較少的通訊設備裝置,達到較高的網路覆蓋率,較長時間可提供網路服務,節點與叢聚點平均連結時間也較長,且距離骨幹最遠的點與平均節點距離,都相較其他方法近。
摘要(英) Vehicular Ad-hoc Networks(VANET) can be used as a mean to alleviate traffic congestion and provide location-based services. The success of these applications relies heavily on effective message transmissions. To achieve this
goal, the virtual backbone is known to be a powerful tool. In this thesis, we propose a novel method to classify vehicles according to their route and time predictability, and use such classification as the basis to construct the virtual backbone for VANET.
Our protocol, namely Classification-based Virtual Backbone Construction in Vehicular Ad-hoc Networks (CVBCV), aims at providing network services to more vehicles with less hardware cost at the initial stage of VANET deployment. By doing so, we hope to provide enough incentive to drivers to install IEEE 802.11p On Board Unit (OBU) at their vehicles, and can eventually help speed
up the deployment of VANET. To obtain a reliable simulation results, we utilize the traffic simulation tool STRAW and network simulator JiST/SWANS, with the real San Francisco street dataset downloaded from United State TIGER
system.
The simulation results show that by using only a few major bus routes as the virtual backbone, we are able to provide more network coverage, longer service
duration, and fewer handoffs with fewer OBUs. The best results can be had when CVBCV works with a few Road Side Units deployed at traffic-concentrated crossroads.
關鍵字(中) ★ 虛擬骨幹
★ 叢聚
關鍵字(英) ★ Clustering
★ Virtual backbone
★ TIGER
★ STRAW
★ JiST/SWANS
論文目次 摘要............................................................................................................. i
Abstract ......................................................................................................ii
誌謝...........................................................................................................iii
目錄........................................................................................................... iv
圖目錄......................................................................................................vii
表目錄....................................................................................................... ix
一、緒論介紹............................................................................................ 1
1-1 論文概要................................................................................... 1
1-2 研究目的................................................................................... 2
1-3 論文架構................................................................................... 3
二、文獻回顧............................................................................................ 5
2-1 CDS 法...................................................................................... 5
2-2 叢聚法....................................................................................... 9
2-3 覆蓋問題................................................................................. 10
2-3-1 感測覆蓋..................................................................... 10
2-3-2 地理覆蓋..................................................................... 11
2-3-3 區域盤狀覆蓋集......................................................... 11
三、CVBCV............................................................................................ 13
3-1 研究動機................................................................................. 13
3-2 協定介紹................................................................................. 16
四、模擬系統平台.................................................................................. 20
4-1 地理資料庫系統.................................................................... 20
4-1-1 TIGER 系統................................................................ 20
4-1-2 TMRS 軟體................................................................. 23
4-2 JiST / SWANS......................................................................... 23
4-2-1 JiST.............................................................................. 23
4-2-2 SWANS........................................................................ 24
4-2-3 SWANS 的實體層...................................................... 25
4-2-4 SWANS 的MAC 層................................................... 26
4-2-5 SWANS 的網路層...................................................... 31
4-2-6 SWANS 中層與層之間的交互.................................. 33
4-3 STRAW................................................................................... 35
五、模擬評估.......................................................................................... 37
5-1 環境設定................................................................................. 37
5-2 評估準則................................................................................. 39
5-2-1 車輛節點接受網路服務的比例................................. 39
5-2-2 節點距離虛擬骨幹的最遠距離................................. 40
5-2-3 平均節點距離虛擬骨幹的距離................................. 40
5-2-4 連結時間比例............................................................. 40
5-2-5 與叢聚點平均連結時間............................................. 41
5-3 協定評估................................................................................. 41
5-3-1 Roadside Unit .............................................................. 42
5-3-2 CDS 架構骨幹網路.................................................... 43
5-3-3 CVBCV ....................................................................... 44
5-3-4 CVBCV II.................................................................... 46
5-4 不同協定的效能.................................................................... 48
六、結論與未來研究方向...................................................................... 56
6-1 結論......................................................................................... 56
6-2 未來展望................................................................................. 57
參考文獻.................................................................................................. 60
參考文獻 [1] X. Bai, D. Xuan, Z. Yun, T. H. Lai, and W. Jia, “Complete Optimal Deployment Patterns for Full-Coverage and k-Connectivity (k ≤ 6) Wireless Sensor Networks,” ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Jun. 2008
[2] D. R. Choffnes and F. E. Bustamante, “An Integrated Mobility and Traffic Model for Vehicular Wireless Networks,” in Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks (VANET), Sep.
2005.
[3] D. R. Choffnes and F. E. Bustamante, “STRAW - An Integrated Mobility and Traffic Model for VANETs,” in Proceedings of the 10th International Command and Control Research and Technology Symposium (CCRTS),June 2005.
[4] J. Deng, Y. S. Han, W. B. Heinzelman, and P. K. Varshney, “Scheduling Sleeping Nodes in High Density Cluster-based Sensor Networks,”ACM/Kluwer Mobile Networks and Applications (MONET) Special Issue on ”Energy Constraints and Lifetime Performance in Wireless Sensor
Networks”, vol. 10, no. 6, pp. 825–835, Dec. 2005.
[5] F. Dai and J. Wu, “An Extended Localized Algorithm for Connected Dominating Set Formation in Ad Hoc Wireless Networks,” IEEE Transaction on Parallel Distributed Systems, vol. 15, no. 10, pp. 908–920,2004.
[6] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[7] H. Gupta, Z. Zhou, S. R. Das, and Q. Gu, “Connected Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution,” in IEEE/ACM Transactions on Networking, vol. 14, Issue 1, 2006.
[8] B. Kim, J. Yang, D. Zhou, and M.-T. Sun, “Energy-Aware Connected Dominating Set Construction in Mobile Ad Hoc Networks,” in Proceedings of the 14th IEEE International Conference on Computer Communications and Networks, Oct. 2005, pp. 229–234.
[9] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On greedy construction of connected dominating sets in wireless networks,” Wireless Communications and Mobile Computing, vol. 5, no. 8, pp. 927–932, 2005.
[10] J. Otto, F. E. Bustamante, and R. Berry, “Down the Block and Around the Corner:The Impact of Radio Propagation on Inter-vehicle Wireless Communication,” in Proc. of IEEE International Conference on Distributed Computing Systems (ICDCS), June 2009.
[11] M.-T. Sun, X. Ma, C.-W. Yi, C.-K. Yang, T.-H. Lai, “Minimum Disc Cover Set Construction in Mobile Ad Hoc Networks,” Lecture Notes in Computer Science - Networking and Mobile Computing, vol. 3619, pp. 712-721, 2005.
[12] F. Shen, M.-T. Sun, C. Liu, and A. Salazar, “Coverage-aware Sleep Scheduling for Cluster-based Sensor Networks, ”in Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, Hungary, Apr. 2009.
[13] K. Sakai, M.-T. Sun, W.-S. Ku, and H. Okada, “Maintaining CDS in Mobile Ad Hoc Networks,” in Proceedings of International Conference on Wireless Algorithms, Systems and Applications (WASA), Oct. 2008.
[14] K. Sakai, F. Shen, K.-M. Kim, M.-T. Sun, and H. Okada, “Multi-Initiator Connected Dominating Set for Mobile Ad Hoc Networks,” in Proceedings of IEEE International Conference on Communications (ICC), May 2008,
URL http://www.eng.auburn.edu/ sunmint/icc08.pdf.
[15] M.-T. Sun, C.-W. Yi, C.-K. Yang, and T.-H. Lai, “An Optimal Algorithm for the Minimum Disc Cover Problem,” Algorithmica, vol. 50, no. 1, pp. 58-71, Jan. 2008.
[16] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks,” Mobile Networks and Application, vol. 9, no. 2, pp. 141–149, 2004.
[17] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On Calculating Power-Aware Connected Dominating Sets for Efficient Routing in Ad Hoc Wireless Networks,” IEEE/KICS Journal of Communications and Networks, vol. 4, no. 1, pp. 59–70, 2002.
[18] C.-W. Yi, M.-T. Sun, and F.-C. Liu, “Minimum Local Disk Cover Sets for Broadcasting in Heterogeneous Wireless Ad Hoc Networks,” in Proceedings of International Workshop on Wireless and Sensor Networks (WSNET-07), XiAn, China, Sep. 2007.
[19] S. Yang, J. Wu, and F. Dai, “Efficient Backbone Construction Methods in MANETs Using Directional Antennas,” in Proceedings of the 27th International Conference on Distributed Computing Systems, 2007.
[20] Z. Zhou, S. Das, and H. Gupta, “Variable Radii Connected Sensor Cover in Sensor Networks”, IEEE SECON 2004, Oct. 2004.
[21] D. Zhou, M.-T. Sun, and T. Lai. “A Timer-based Protocol for Connected Dominating Set Construction in IEEE 802.11 Wireless Networks,” in Proceedings of International Symposium on Applications and the Internet
(SAINT), pages 2–8, Jan. 2005.
[22] R.Barr. JiST– Java in Simulation Time User Guide.[Online].Available:http://jist.ece.cornell.edu/
[23] R.Barr. SWANS - Scalable Wireless Ad hoc Network Simulator User Guide.[Online]. Available: http://jist.ece.cornell.edu/
[24] Robert R. McCormick School of Engineering and Applied Science, Northwestern University, C3: Car-to-car cooperation. Available :
http://bydesign.mccormick.northwestern.edu/SP2006/C3.html
[25] EECS - McCormick - Northwestern University, STRAW. Available:
http://www.aqualab.cs.northwestern.edu/projects/STRAW/index.php
[26] U.S. Census Bureau,TIGER. Available:
http://www.census.gov/geo/www/tiger/
[27] Tiger 的中文說明網站. Available:
http://ngis.moi.gov.tw/TheFiles/journal/42/011.htm
[28] TMRS 軟體的使用方式與下載網站介紹. Available:
http://www.sumitbirla.com/software/tmrs.php
[29] 台北市公車動態資訊系統. Available:
http://www.e-bus.taipei.gov.tw:8080/index_6_1.aspx
[30] 夏杉,「基於線性優化實現的對於網絡編碼仿真工具的開發」,同濟大學中德學院,信號與信息處理碩士學位論文,September 2008。
[31] 蔡博文、吳淑瓊、李介中,「臺灣2000 年戶口住宅普查與門牌地址之整合應用:長期照護設施空間分派分析」,人口與性別研究中心期刊論文,民國九十三年。
指導教授 孫敏德(Min-te Sun) 審核日期 2010-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明