博碩士論文 975201071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.137.187.229
姓名 廖偉廷(Wei-ting Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用模糊理論於穩態視覺誘發之腦波人機介面判斷
(Applying fuzzy theory to the command classification in a steady-state visual evoked potential based brain computer interface)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除★ 智慧型心電圖遠端監控系統
★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究開發利用模糊理論於穩態視覺誘發(Steady-State Visual Evoked Potential, SSVEP)之大腦人機界面(Brain Computer Interface, BCI)判斷。受測者注視閃光頻率為32Hz且不同相位的4個閃光,使大腦誘發出相對應32Hz的穩態視覺誘發電位。使用數位22Hz~42Hz帶通濾波器濾腦波訊號(electroencephalography, EEG),並利用疊加平均的方法處理訊號,為判斷做前置處理。訊號處理的末端利用模糊理論來對每個不同受測者的腦波訊號做最佳化判斷,並把所有對腦波訊號的訊號處理及決策以微處理器硬體實現,最後把判斷的結果用無線藍芽模組傳輸到電腦用LabVIEW收結果,並藉以控制人形機器人,實現受測者所要下達給機器人的指令。實驗結果發現受測者用模糊理論判斷方法比一般選項判斷方法,其準確率提高1~12%,平均準確率為93.38 ± 5.74%,平均的ITR為60.26 ± 23.71 bits/min,從結果可以明顯看出模糊判斷方法可以改善一般判斷方法的不足,進而提高準確率。
摘要(英) The thesis applied Fuzzy Theory to the judgment of steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI).User gazed at flash channels(FCs) that encoded with different phases in order to induce the corresponding SSVEP , so that the gazed FC can be recognized and the command mapping to the gazed FC can be sent out to achieve control purposes. In the thesis, the frequency of FC is 32 Hz, and there are four FCs with different phases 0゚, 90゚, 180゚ and 270゚. The SSVEP responses were processed by 20–36 Hz filter and epoch-average.Using Fuzzy Theory to optimize the judgment of BCI system can reduce the occurrence of error judgments. We use a micro-processor to do all the signal process about electroencephalography (EEG), and transmit the result to PC with Bluetooth. PC will sent out the control direction to the robot, and the robot do the actions that user wants.The experiment results show that apply Fuzzy Theory to the judgment of BCI system can increase more 1~12% accuracy than normal judgment theory. Some subjects’ accuracy can even reach 100% by using Fuzzy Theory.
關鍵字(中) ★ 模糊理論
★ 腦電波
★ 大腦人機介面
★ 穩態視覺誘發電位
關鍵字(英) ★ Brain-computer interface (BCI)
★ electroencephalography (EEG)
★ steady-state visual evoked potential (SSVEP)
★ fuzzy theory
論文目次 中文摘要................................................................................................................I
英文摘要..............................................................................................................II
致謝...................................................................................................................III
目錄....................................................................................................................IV
圖目錄................................................................................................................VI
表目錄................................................................................................................IX
第一章 緒論........................................................................................................1
1.1研究動機與目的...........................................................................................................1
1.2文獻回顧.......................................................................................................................2
1.3論文架構.......................................................................................................................5
第二章 系統與硬體介紹.....................................................................................6
2.1大腦人機介面...............................................................................................................6
2.2 SSVEP...........................................................................................................................6
2.3 FVEP...........................................................................................................................11
2.4系統架構....................................................................................................................15
2.5 Bio Amplifier...............................................................................................................16
2.6 微處理器(Micro-Processor)......................................................................................16
2.7藍芽模組(Bluetooth Module).....................................................................................19
2.8 AI馬達機器人............................................................................................................22
2.8.1 AI馬達.............................................................................................................24
2.9車體............................................................................................................................25
2.10無線傳輸模組..........................................................................................................28
第三章 研究理論與方法...................................................................................29
3.1刺激光源實現方式.....................................................................................................29
3.2平均技術.....................................................................................................................30
3.3選項判斷方法.............................................................................................................33
3.4 Fuzzy簡述..................................................................................................................36
3.5應用Fuzzy於選項判斷.............................................................................................43
第四章 實驗結果...............................................................................................48
4.1實驗設計說明.............................................................................................................48
4.2一般選項判斷方法的分析流程.................................................................................49
4.3應用Fuzzy於選項判斷的分析流程..........................................................................53
4.4兩種選項判斷方法總結.............................................................................................58
4.5即時控制機器人.........................................................................................................60
4.6 即時控制自走車........................................................................................................62
第五章 結論與未來展望...................................................................................66
參考文獻.............................................................................................................67
參考文獻 [1] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan, "Brain–computer interfaces for communication and control", Clinical neurophysiology, vol. 113, pp. 767-791, 2002.
[2] T. M. Vaughan, "Guest editorial brain-computer interface technology: a review of the second international meeting", IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol. 11, pp. 94-109, 2003.
[3] B. Blankertz, K. R. Muller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw, A. Schlogl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schroder, and N. Birbaumer, "The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials" , IEEE Transactions on Biomedical Engineering , vol. 51, pp. 1044-1051, 2004.
[4] I. Volosyak, H. Cecotti, and A. Graser, "Optimal visual stimuli on LCD screens for SSVEP based brain-computer interfaces", Neural Engineering, vol. 5, pp. 447-450, 2009.
[5] I. Sugiarto, B. Allison, and A. Graser, "Optimization Strategy for SSVEP-Based BCI in Spelling Program Application", Computer Engineering and Technology, vol. 1, pp. 223-226, 2009.
[6] M. T. Al-maqtari, Z. Taha, and M. Moghavvemi, "Steady state-VEP based BCI for control gripping of a robotic hand", Technical Postgraduates (TECHPOS), pp. 1-3, 2009.
[7] C. Ming, G. Xiaorong, G. Shangkai, and X. Dingfeng, "Design and implementation of a brain-computer interface with high transfer rates" , IEEE Transactions on Biomedical Engineering, vol. 49, pp. 1181-1186, 2002.
[8] W. Yijun, W. Ruiping, G. Xiaorong, H. Bo, and G. Shangkai, "A practical VEP-based brain-computer interface" , IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 234-240, 2006.
[9] Y. Zheng, G. Xiaorong, B. Guangyu, H. Bo, and G. Shangkai, "A half-field stimulation pattern for SSVEP-based brain-computer interface", Annual International Conference of the IEEE EMBS, pp. 6461-6464, 2009.
[10] L. Piccini, S. Parini, L. Maggi, and G. Andreoni, "A Wearable Home BCI system: preliminary results with SSVEP protocol", Proceedings of the 27th Annual International Conference of the IEEE EMBS, pp. 5384-5387, 2005.
[11] G. R. Muller-Putz and G. Pfurtscheller, "Control of an Electrical Prosthesis With an SSVEP-Based BCI" , IEEE Transactions on Biomedical Engineering, vol. 55, pp. 361-364, 2008.
[12] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, "A direct brain interface based on event-related potentials" , IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 180-185, 2000.
[13] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones, "Brain-computer interfaces based on the steady-state visual-evoked response" , IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 211-214, 2000.
[14] G. Miiller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, "Steady-state visual evoked potential (SSVEP)-bascd communication: Impact of harmonic frequency components" , Journal of Neural Engineering, vol. 2, pp. 123-130, 2005.
[15] L. Zhonglin, Z. Changshui, W. Wei, and G. Xiaorong, "Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs" , IEEE Transactions on Biomedical Engineering, vol. 53, pp. 2610-2614, 2006.
[16] H. Cecotti, "A Self-Paced and Calibration-Less SSVEP-Based Brain Computer Interface Speller" , IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, pp. 127-133, 2010.
[17] L. Maggi, S. Parini, L. Piccini, G. Panfili, and G. Andreoni, "A four command BCI system based on the SSVEP protocol", Proceedings of the 28th Annual International Conference of the IEEE EMBS, pp. 1264-1267, 2006.
[18] R. S. Leow, F. Ibrahim, and M. Moghavvemi, "Development of a steady state visual evoked potential (SSVEP)-based brain computer interface (BCI) system", International Conference on Intelligent and Advanced Systems, pp. 321-324, 2007.
[19] M. Cheng, X. Gao, S. Gao, and B. Wang, "Stimulation frequency extraction in SSVEP-based brain-computer interface", First International Conference on Neural Interface and Control, pp. 64-67, 2005.
[20] E. American, "Society, Electrode Position Nomenclature Committee: Guideline thirteen: Guidelines for standard electrode posi-tion nomenclature", J Clin Neurophysiol, vol. 11, pp. 111-113, 1994.
[21] P. L. Lee, C. H. Wu, J. C. Hsieh, and Y. T. Wu, "Visual evoked potential actuated brain computer interface: a brain-actuated cursor system", Electronics Letters, vol. 41, pp. 832-834, 2005.
[22] S. Levine, J. Huggins, S. BeMent, R. Kushwaha, L. Schuh, E. Passaro, M. Rohde, and D. Ross, "Identification of electrocorticogram patterns as the basis for a direct brain interface", Journal of clinical neurophysiology, vol. 16, p. 439, 1999.
[23] E. Sutter, "The brain response interface: communication through visually-induced electrical brain responses", Journal of Microcomputer Applications, vol. 15, pp. 31-45, 1992.
[24] J. J. Wilson and R. Palaniappan, "Augmenting a SSVEP BCI through single cycle analysis and phase weighting", Proceedings of the 4th International IEEE/EMBS Conference on Neural Engineering, pp. 371-374, 2009.
[25] F. Lotte, A. Lecuyer, and B. Arnaldi, "FuRIA: An Inverse Solution Based Feature Extraction Algorithm Using Fuzzy Set Theory for Brain Computer Interfaces" , IEEE Transactions on Signal Processing, vol. 57, pp. 3253-3263, 2009.
[26] D. Coyle, G. Prasad, and T. M. McGinnity, "Faster Self-Organizing Fuzzy Neural Network Training and a Hyperparameter Analysis for a Brain Computer Interface" , IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, pp. 1458-1471, 2009.
[27] C. Lu and W. Feng-xiao, "On Rough Ideals and Rough Fuzzy Ideals of BCI-Algebras", Fuzzy Systems and Knowledge Discovery, vol. 5, pp. 281-284, 2008.
[28] P. Herman, G. Prasad, and T. M. McGinnity, "Designing a robust type-2 fuzzy logic classifier for non-stationary systems with application in brain-computer interfacing", IEEE International Conference on SMC, pp. 1343-1349, 2008.
[29] L. Guangquan, H. Gan, M. Jianjun, Z. Dingguo, and Z. Xiangyang, "Unsupervised Adaptation Based on Fuzzy C-Means for Brain-Computer Interface", The 1st International Conference on Information Science and Engineering (ICISE), pp. 4122-4125, 2009.
[30] Y. Lanlan, M. Tianxing, and H. Jian, "The Finger Movement Identification Based on Fuzzy Clustering and BP Neural Network", International Conference on Business Intelligence and Financial Engineering, pp. 29-33, 2009.
[31] M. Ashtiyani, S. Asadi, and P. M. Birgani, "ICA-Based EEG Classification Using Fuzzy C-mean Algorithm", Information and Communication Technologies: From Theory to Applications, pp. 1-5, 2008.
[32] H. Takahashi, T. Yoshikawa, and T. Furuhashi, "Application of reliability-based automatic repeat request to multi-class classification for brain-computer interfaces", IEEE International Conference on Fuzzy Systems, pp. 1027-1032, 2009.
[33] D. Coyle, T. M. McGinnity, and G. Prasad, "A multi-class brain-computer interface with SOFNN-based prediction preprocessing", IEEE International Joint Conference on Neural Networks, pp. 3696-3703, 2008.
[34] S. Kuo-Kai, L. Po-Lei, L. Ming-Huan, L. Ming-Hong, L. Ren-Jie, and C. Yun-Jen, "Development of a Low-Cost FPGA-Based SSVEP BCI Multimedia Control System," , IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 125-132, 2010.
[35] Microchip company "dsPIC30F4013 Data Sheet",2007.
取自http://ww1.microchip.com/downloads/en/DeviceDoc/70135E.pdf
[36] 曾百由,數位訊號控制器原理與應用,宏有圖書開發股份有限公司,2005。
[37] Hot Life Technologies Co. "HL-MD08A-C1 Data Sheet",2009.
取自http://www.hotlife.com.tw/HL-MD08A-C1.htm
[38] ICCI "新AI馬達機器人 Data Sheet",2008
取自http://www.icci.com.tw/web/MdFront?mdId=MD0000002307002211 &command=displayDetail&FP=37265
[39] 謝俊傑,多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面,國立中央大學,碩士論文,2007。
[40] 王文俊,認識Fuzzy,全華圖書股份有限公司,2005。
指導教授 李柏磊(Po-Lei Lee) 審核日期 2010-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明