博碩士論文 975201089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.119.137.175
姓名 盧彥儒(Yen-Ju Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
(Command Classification in SSVEP-based BCI using HMM and Its Application to Handle a Remote-Control Car )
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,穩態視覺誘發電位(steady state visual evoked potential, SSVEP)為基礎之大腦人機界面(BCI)已被廣泛使用,藉由利用不同頻率對閃光進行進行編碼,系統可以經過分析穩態視覺誘發電位的頻率,辨別出使用者正在注視的閃光,並輸出對應的控制指令。相較於其它腦波人機介面,以穩態視覺誘發電位為基礎之腦波人機介面,具有高傳輸率(>20位元/分)與高準確率(>90%),故受到研究學者的重視。然而,此種腦波人機介面在使用者移動視線注視不同選項時,會造成視覺誘發電位訊號的不明確而導致系統無法判別或誤判。為了解決此問題,本研究提出用匹配濾波器擷取訊號特徵,再利用隱馬可夫模型(Hidden Markov Model,HMM),對誘發的腦波訊號建立模型,並藉由維特比解碼(Viterbi Decoding)找出隸屬各模型之最大機率以進行分類,達到提高訊號辨識度的效果。目前有3位受測者,平均正確率可達90.21%,平均ITR為32.9 bits/min。本研究使用隱馬可夫模型可針對不同選項間之轉換情形進行辨識,研究成果可提高視覺誘發腦波人機介面之穩定度,將來預計可進一步提升辨識速度,應用於遙控車之即時控制上。
摘要(英) In recent years, steady-state visual evoked potential (SSVEP) – based brain computer interface (BCI) has been widely used in many applications. By tagging flickers with different frequencies, user’s gazed targets can be recognized by analyzing the frequencies of SSVEPs. SSVEP-based BCI has drawn great attentions by scientist and engineers due to its high information transfer rate (>20bits/min) and high accuracy (>90%). However, uncertainty and ambiguity usually occurs while user shifting his gaze between different targets, which usually result in incapability or, even worse, discrimination error in gazed target identification. Therefore, this study attempts to adopt hidden markov model (HMM) to classify the measured SSVEP into gazed, target-shifted and unattended states. The frequency contents in SSVEP were first analyzed by a match-filter detector and viterbi decoding was subsequently used to evaluate the probability of categories in HMM. The model which had maximum probability was recognized to activate its corresponding command. Currently, we have tested the proposed system on three volunteers with a mean accuracy of 90.21%. The experiment results validated the efficacy of HMM in discerning the transition states when subject shifting their gazes among different targets, which might be helpful to increase the stability of a SSVEP-based BCI. Future work will apply this system to the real-time control of a remote-control car.
關鍵字(中) ★ 腦電波
★ 穩態視覺誘發電位
★ 馬可夫模型
★ 腦人機介面
關鍵字(英) ★ electroencephalography (EEG)
★ steady-state visual
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文架構 3
第二章 腦波與大腦人機介面 4
2.1 大腦結構 4
2.2 大腦皮質的各功能區 5
2.3 腦波 6
2.4 腦波量測 7
2.5 視覺誘發電位 9
2.6 以穩態視覺誘發電位設計的BCI系統 9
第三章 研究方法與流程 12
3.1 系統架構 12
3.2 dsPIC數位訊號控制器 13
3.3視覺刺激介面 14
3.4 生理放大器 16
3.5 隱馬可夫模型 21
3.5.1 馬可夫鏈 21
3.5.2隱馬可夫模型介紹 22
3.5.3 HMM於語音辨識流程回顧 33
3.5.4 應用HMM於BCI選項辨識 35
3.6 遙控車系統架構介紹 40
3.6.1車體外型與結構 40
3.6.2電源驅動系統 42
3.6.3超音波感測器與工作電路 43
3.6.4馬達驅動電路 46
3.6.5無線傳輸模組 49
3.6.6無線攝影機 50
3.6.7微處理器控制流程 52
第四章 實驗與結果 57
4.1實驗設計 57
4.1.1 模型建立 57
4.1.2 交叉驗證 59
4.2 實驗結果 60
4.2.1 特徵擷取結果 60
4.2.2模型訓練結果 61
4.2.3 驗證比對結果 63
4.3 結果討論 76
第五章 結論與未來展望 77
參考文獻 79
參考文獻 [1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland et al., “Brain-computer interfaces for communication and control, “Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, Jun, 2002.
[2] R. S. Huang, C. J. Kuo, L. L. Tsai et al., “EEG pattern recognition - arousal states detection and classification,” in Proc. IEEE Int. Conf., Neural Networks, 1996, pp. 641-646.
[3] S. Helmy, T. Al-ani, Y. Hamam et al., “P300 based brain-computer interface using Hidden Markov Models,” in Proc. IEEE Int. Conf., Intelligent Sensors, Sensor Networks and Information Processing, 2008, pp. 127-132.
[4] S. D. Power, T. H. Falk and T. Chau, “Classification of prefrontal activity due to mental arithmetic and music imagery,” Journal of Neural Engineering, vol. 7, no. 2, pp. 026002, 2010.
[5] 潘震澤,人體生理學第九版:合記圖書出版社, 2005。
[6] J. Malmivuo and R. Plonsey: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, New York, Oxford University Press, 1995.
[7] R. R. Seeley, P. Tate and T. D. Stephens: Essentials of Anatomy and Physiology, 6/e, Boston, McGraw-Hill, 2007.
[8] 台北榮民總醫院教學研究部整合性腦功能實驗室,取自
http://ibru.vghtpe.gov.tw/chinese/eeg.htm.
[9] American Electroencephalographic Society, “Guideline thirteen: guidelines for standard electrode position nomenclature,” Journal of Clinical Neurophysiology., vol. 11, no. 1, pp. 111-3, Jan, 1994.
[10] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder and Vaegan, “Visual evoked potentials standard (2004),” Document Ophthalmologica., vol. 108, no. 2, pp. 115-123, Mar, 2004.
[11] P. J. Cilliers and A. J. W. Van Der Kouwe, "A VEP-based computer interface for C2-Quadriplegics,” in Proc. of the 15th Annual IEEE Int. Conf., Engineering in Medicine and Biology Society, 1993, pp. 127-132.
[12] E. Sutter, “The brain response interface: communication through visually-induced electrical brain responses,” Journal of Micropompuer. Applications., vol. 15, no. 1, pp. 31-45, 1992.
[13] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier and M. Pregenzer, “Current trends in Graz Brain-Computer Interface (BCI) research,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 216-219, Jun, 2000.
[14] E. R. Ulloa and J.A. Pineda, “Recognition of point-light biological motion: Mu rhythms and mirror neuron activity,” Behavioural brain research, vol. 183, no. 2, pp. 188-194, 2007.
[15] Y. Wang, R. Wang, X. Gao et al., “A practical VEP-based brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 234-240, Jun, 2006.
[16] 曾百由,dsPIC數位訊號控制器原理與應用─MPLAB C30開發實務: 宏友圖書開發股份有限公司,2006。
[17] Microchip Technology, “dsPIC30F4011/4012 Data Sheet,” 2006.
[18] Z. Wu, Y. Lai, Y. Xia et al., “Stimulator selection in SSVEP-based BCI,” Medical engineering & physics, vol. 30, no. 8, pp. 1079-1088, 2008.
[19] 元智大學最佳化設計實驗室,AD620儀表放大器使用說明,取自http://designer.mech.yzu.edu.tw/article/articles/technical/file/(2002-05-25)%20AD620%BB%F6%AA%ED%A9%F1%A4j%BE%B9%A8%CF%A5%CE%BB%A1%A9%FA.pdf
[20] Analog Devices, “Low Cost, Low power Instrumentation Amplifier - AD620,” http://users.ece.utexas.edu/~valvano/Datasheets/AD620.pdf.
[21] S. Franco, Design with operational amplifiers and analog integrated circuits: McGraw-Hill, New York, USA, 2001.
[22] T. Kanungo, “Hidden Markov Models,” http://www.cfar.umd.edu/~kanungo/software/hmmtut.pdf
[23] I. MacDonald and W. Zucchini, Hidden Markov and other models for discrete-valued time series: Chapman & Hall/CRC, 1997.
[24] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.
[25] R. Durbin, S. Eddy, A. Krogh et al., Biological sequence analysis: Probabilistic models of proteins and nucleic acids: Cambridge University, 1998.
[26] 劉曜德,「隱藏馬可夫模型觀測序列遺漏值處理之研究」,國立台中師範學院教育測驗統計研究所碩士論文,2003。
[27] 李國源,「自適性隱藏式馬可夫模型拓撲於語音辨識之應用」,國立成功大學資訊工程學系碩士論文,2008。
[28] 張智星,On-line Books─Audio Signal Processing and Recognition,取自 http://neural.cs.nthu.edu.tw/jang/books/audioSignalProcessing
[29] 蕭仲仁,「應用模糊決策樹控制法則於自走車防撞系統之研發」 國立成功大學航空太空工程研究所碩士論文,2009。
[30] 張榮洲,數位電路 DIY: 全華圖書公司,2003。
[31] Texa Instruments, “CD4051B, CD4052B, CD4053B Data Sheet,” October 2003.
[32] 洪新堯,「電動機車煞車回充電系統設計與研究」, 國立臺灣大學機械工程學系碩士論文, 2000。
[33] TOSHIBA, “TOSHIBA Seminar - TA7257P,” 2001.
[34] 元智大學最佳化實驗室,小型馬達驅動 IC 簡介與應用,取自 http://www.ck.tp.edu.tw/~tech/robert/%A4p%AB%AC%B0%A8%B9F%C5X%B0%CAIC%C2%B2%A4%B6%BBP%C0%B3%A5%CE.pdf
[35] 益眾科技,無線傳輸模組,取自http://www.icci.com.tw/web/MdFront?command=displayDetail&mdId=MD0000002307001811
[36] 科泰科技,無線攝影機與接受器,取自http://www.ktbbc.com/wy/cp/KY-2-4GRUSB.html
[37] 黃立維,「明暗閃爍視覺誘發電位於遙控器之應用」,國立中央大學電機系碩士論文,2009。
[38] R. Duda, P. Hart and D. Stork, Pattern classification: Willey-Interscience, 2001.
[39] 謝竣傑,「多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面」,國立中央大學電機系碩士論文,2007。
指導教授 李柏磊(Po-Lei Lee) 審核日期 2010-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明