博碩士論文 975201065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.139.233.17
姓名 陳志誠(Chih-Cheng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 毫米波頻段三倍頻BPSK調變器及注入式鎖態振盪器陣列電路
(Millimeter-Wave Frequency Tripler Circuit with BPSK Modulation and Oscillator Array Circuit using Injection-Locked Technique)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著短距離無線通訊的演進,毫米波頻段逐漸受到重視及廣泛的應用,為了提升毫米波頻段低雜訊的訊號源,以提供準確的頻率及相關的高頻訊號處理,使用訊號倍頻及注入式鎖態的方式,可以改善在高頻操作下的訊號由於元件特性或是被動元件的品質因數所造成相位雜訊不良的問題。本論文頻段主要設計於60 GHz,透過WIN 0.15 μm GaAs pHEMT與TSMC 0.18 μm CMOS製程實現兩部份的電路。第一部份利用兩個交錯耦合對的架構,設計為20-60 GHz三倍頻BPSK調變器電路;在適當閘極-源極間偏壓的選擇,讓電晶體的操作點對於三階諧波有最大的輸出效率,並藉由高低準位的變換下使輸出能有BPSK的調變訊號。
第二部份使用注入式鎖態振盪器搭配二倍頻技巧,讓壓控振盪器產生60 GHz訊號,當振盪器受到外部訊號輸入時,為了平衡振盪條件,在鎖定後會有相位移的形成,將此特性運用在相位天線陣列中。本電路排列成2×2的振盪器陣列電路,在基頻注入鎖定時,相位雜訊在偏移中心頻率1 MHz時為-116 dBc/Hz,最大鎖態範圍為350 MHz,相位移能有-154˚至176˚的範圍。
摘要(英) With the progress of short-range wireless communications, many development and applications are applied in millimeter-wave bands. In order to obtain a low phase noise of reference signal and an accurate operation frequency in millimeter-wave bands, using the frequency multiplier and injection-locked approach can improve the phase noise caused by the poor device characteristics or quality factor of passive in the high-frequency band. In this thesis, all circuits are designed in the 60 GHz band by WIN 0.15 μm GaAs pHEMT and TSMC 0.18 μm CMOS technologies. In the first part of thesis, the two cross-coupled pair are used to design a 20-60 GHz frequency tripler with functionality of BPSK modulator. The third-harmonic with low conversion loss can be achieved by choosing the proper bias on the transistor device, where the source bias changes alternately to transform the output phase with BPSK modulation.
In the second part of thesis, a 60 GHz VCO used the injection-locked oscillator with a second-harmonic generation techniques. In order to balanced the oscillation condition when the oscillator is interfered by an external signal, the phase will shift when locking. The phase shift feature is further used in the phase antenna array. The design of a 2×2 oscillator array in implemented. When the fundamental frequency is injected, the maximum locking range is up to 350 MHz. The phase noise can be improved to -116 dBc/Hz at 1-MHz offset, and the phase can shift from -154˚ to 176˚ under a locking status.
關鍵字(中) ★ 注入式鎖態
★ 二元相位移鍵數位訊號調變
★ 三倍頻
★ 振盪器陣列
關鍵字(英) ★ injection locked
★ frequency tripler
★ BPSK
★ Oscillator Array
論文目次 摘要 ............................................................................................................................................ i
Abstract .................................................................................................................................... ii
誌謝 .......................................................................................................................................... iii
目錄 .......................................................................................................................................... iv
圖目錄 ...................................................................................................................................... vi
表目錄 ....................................................................................................................................... x
第一章 緒論 .......................................................................................................................... 1
1.1 研究動機及背景 ...................................................................................................... 1
1.2 相關研究與發展 ...................................................................................................... 3
1.3 論文架構 .................................................................................................................. 4
第二章 V-Band三倍頻BPSK調變器電路 ....................................................................... 5
2.1 簡介 .......................................................................................................................... 5
2.2 倍頻器之介紹 .......................................................................................................... 5
2.2.1 重要參數規格 ............................................................................................... 5
2.2.2 被動式倍頻器 ............................................................................................... 7
2.2.3 主動式倍頻器 ............................................................................................. 10
2.3 二元相位移鍵數位訊號調變 ................................................................................ 13
2.4 0.15 μm pHEMT V-band三倍頻BPSK電路設計 ............................................... 15
2.4.1 電路架構設計 ............................................................................................. 15
2.4.2 模擬與量測結果 ......................................................................................... 20
2.4.3 結果與討論 ................................................................................................. 29
2.5 0.18 μm CMOS V-band三倍頻BPSK電路設計 ................................................. 30
2.5.1 電路架構設計 ............................................................................................. 30
2.5.2 模擬與量測結果 ......................................................................................... 32
2.5.3 結果與討論 ................................................................................................. 40
2.6 結論 ........................................................................................................................ 40
第三章 60 GHz 注入式鎖態振盪器陣列電路 ................................................................. 42
3.1 簡介 ........................................................................................................................ 42
3.2 相位陣列之介紹 .................................................................................................... 43
3.3 注入式鎖態振盪器介紹 ........................................................................................ 49
3.3.1 振盪器基本原理 ......................................................................................... 49
3.3.2 注入式鎖態之原理 ..................................................................................... 52
3.3.3 鎖態範圍 ..................................................................................................... 52
3.3.4 相位雜訊 ..................................................................................................... 55
3.4 60 GHz 注入式鎖態振盪器陣列電路 ................................................................. 56
3.4.1 2×2注入式鎖態振盪器陣列設計電路 ..................................................... 56
3.4.2 模擬與量測結果 ......................................................................................... 60
3.5 結論 ........................................................................................................................ 71
第四章 結論 ........................................................................................................................ 72
參考文獻 ................................................................................................................................. 73
參考文獻 [1] RF Atmospheric Absorption / Ducting [Online].
[2] R. fisher,“60 GHz WPAN standardization within IEEE 802.15.3c,”in Proc. Signals, Systems and Electronics (ISSSE), pp. 103-105, July, 2007.
[3] Cheolhee Park and Theodore S. Rappaport,“Short-range wireless communications for next -generation networks: UWB, 60 GHz millimeter-wave WPAN, and Zigbee,” IEEE Wireless common. vol. 14, pp. 70-78, Aug. 2007.
[4] R. Adler, “A study of Locking Phenomena in Oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385, Oct. 1973.
[5] Kenji Kamogawa, Tsuneo Tokumitsu, and Masayoshi Aikawa, “Injection-Locked Oscillator Chain: A Possible Solution to Millimeter-Wave MMIC Synthesizers,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 9, pp. 1587-1584, September 1997.
[6] Ali Boudiaf, Didier Bachelet, and Christian Rumelhard, “A High-Efficiency and Low-Phase Noise 38-GHz pHEMT MMIC Tripler,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, pp. 2546-2553, December 2000.
[7] Wei L. Chan, and John R. Long, “A 56-65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, December 2008.
[8] K. Krishnamurthi, and R. G. Harrison, “Analysis of symmetric varactor frequency triplers,” IEEE MTT-S International Microwave Symposium Digest, pp. 649–652. June 1993.
[9] Chuying Mao, S. Sankaran, E. Seokand, C. S. Nallani, and Kenneth K. O, “Millimeter Wave Varistor Mode Schottky Diode Frequency Doubler in CMOS,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, March 2009.
[10] I-Jen Chen, Huei Wang, and Powen Hsu, “A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2461-2468, December 2003.
[11] C.-H. Wang, Y.-H. Cho, C.-S. Lin, H. Wang, C.-H. Chen, D.-C. Niu, J. Yeh, C.-Y. Lee, and John Chern, “A 60GHz Transmitter with Integrated Antenna in 0.18μm SiGe BiCMOS Technology,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 659–668, 2006.
[12] Robert A. York, and Tatsuo Itoh, “Injection- and Phase-Locking Techniques for Beam Control,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11, pp. 1920–1929, December 2000.
[13] Mikko Sironen, Yongxi Qian, and Tatsuo Itoh, “A Subharmonic Self-Oscillating Mixer with Integrated Antenna for 60-GHz Wireless Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 3, pp. 442–450, March 2001.
[14] W. J. Chang, J. W. Lim, H. K. Ahn, H. Kim, and H. K. Yu, “60 GHz Amplifier MMICs and Module for 60 GHz WPAN System,” IEEE Radio and Wireless Symposium, pp. 377 – 380, Jan. 2007.
[15] V. Fusco, C. Wang, “V-band 57-65 GHz receiver,” IET Microwaves Antennas & Propagation, vol. 4, Iss. 1, pp. 1–7, January 2010.
[16] Po-Hung Chen, Min-Chiao Chen, and Chung-Yu Wu, “An Integrated 60-GHz Front-end Receiver with a Frequency Tripler Using 0.13-μm CMOS Technology,”IEEE International Conference on Electronics, Circuits and Systems, pp 829-823, Dec. 2007.
[17] K. Benson, and M. A. Frerking, “Theoretical Efficiency for Triplers Using Nonideal Varistor Diodes at Submillimeter Wavelengths,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-33, no. 12, pp. 1367-1374, December 1985.
[18] C. C. H. Tang, “An Exact Analysis of Varactor Frequency Multipliers,” IEEE Trans. on Microwave Theory and Techniques, vol. 14, no. 4, pp. 210-212, Apr. 1966.
[19] David M. Pozar, Microwave Engineering, Addison Wesley, 1990.
[20] Mike Golio, and Janet Golio, RF and Microwave Passive and Active Technologies, CRC Press, 2008.
[21] Bitzer Rainer, “Wideband Balanced Frequency Doublers - A Proposed Novel Planar MIC Structure,” IEEE Microwave Conference, 1991. 21st European, vol. 1, pp. 333–338, Sept. 1991.
[22] Yang Li, Fan Yong, Zhong Rui He, “Investigation and design ofK-band broadband frequency doubler,” IEEE Microwave Conference, 2008 China-Japan Joint, pp. 107 – 109, Sept. 2008
[23] S. A. Mass, Y. Ryu, “A Broadband, Planar, Monolithic Resistive Frequency Doubler,” IEEE MTT-S Int. Symp. Dig., pp. 175-178, 1994.
[24] G.-Y. Chen, Y.-S.Wu, H.-Y. Chang, Y.-M. Hsin, and C.-C. Chiong, “A 60-110 GHz Low Conversion Loss Tripler in 0.15-μm MHEMT Process,” IEEE Asia Pacific Microwave Conference (APMC), 2009. pp. 377-380, Dec. 2009.
[25] D. Shim, S. Sankaran, and K. K. O, “Complementary Antiparallel Schottky BarrierDiode Pair in a 0.13-μm Logic CMOS Technology,” IEEE Electron Device Letters, vol. 29, no. 6, pp 606-608, June 2008.
[26] F. Giannini and G.Leuzzi, Nonlinear Microwave Circuit Design, Wiley, 2004.
[27] 張傳生,數位通訊原理,儒林書局,民國八十一年。
[28] 藍國桐,訊號原理與應用,全華科技圖書股份有限公司,民國八十九年。
[29] J. C. Chiu, J. -C. Chiu, C. -P. Chang, M. -P. Houng, and Y. -H.Wang , “A 12–36 GHz PHEMT MMIC Balanced Frequency Tripler,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 1, pp. 19–21, Jan. 2006.
[30] S. W. Lin, C. -S. Cheng, C. -C. Wei, H. –C. Chiu, R. –J. Yang “A Compact Size Ka Band pHEMT MMIC Frequency Tripler with CPW Technology,” Proceedings of Asia-Pacific Microwave Conference, 2007.
[31] S. G. Shadi, Paramesh, Jeyanandh, “A Wideband Millimeter-Wave Frequency Doubler Tripler in 0.13-μm CMOS,” IEEE RFIC Symposium, pp. 65-68, 2010.
[32] Y. Campos-Roca, L. Verweyen, M. F. Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann, and M. Schlechtweg, “An Optimized 25.5–76.5 GHz pHEMT-Based Coplanar Frequency Tripler, ” IEEE Microwave and Wireless Components Letters, vol. 10, no. 6, pp. 242–244, Jun. 2000.
[33] Donald Allen, Danny Bryant, and Warren Gaiewski, “25.5 to 76.5GHz Active Frequency Tripler for Automotive Radar Applications,” IEEE MTT-S, pp. 2233–2236, 2003.
[34] Guan-Yu Chen, Yi-Shuo Wu, Hong-Yeh Chang, Yue-Ming Hsin, and Chau-Chiong,“A 60-110 GHz Conversion Loss in 0.15-μm MHEMT Process,” IEEE Asia Pacific Microwave Conference, 2009.
[35] Ali M. Niknejad, and Hossein Hashemi. “mm-Wave Silicon Technology 60 GHz and Betond,” Springer, 2008.
[36] Hubregt J. Visser, Array and Phaesd Array Antenna Basics, John Wiley & sons, Ltd, 2005.
[37] David K. Cheng, Fundamentals of Engineering Electromafntics, Addison-Wesley Publishing Company, 1993.
[38] Aydin Babakhani, Xiang Guan, Abbas Komijani, Arun Natarajan and Ali Hajimiri, “A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2795–2806, Dec. 2006.
[39] H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe Phased Array Receiver—LO Phase-Shifting Approach,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 614-626, February 2005.
[40] Sayf Alalusi and Robert Brodersen, “A 60GHz Phased Array in CMOS,” IEEE 2006 Custom Intergrated Circuits Conference (CICC), pp 393-396. September 2006.
[41] J. F. Buckwalter, A. Babakhani, A. Komijani, and Ali Hajimiri, “An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4271-4280, December 2006.
[42] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, pp. 1336–1410, Oct. 1973.
[43] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[44] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, pp.1723–1727, Nov. 1965.
[45] H.R.Rategh, andT. H. Lee, “Superhormonic Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[46] 黃凡修,“利用高階除數操作之注入式鎖態振盪器於微波/毫米波訊號源應用Injection-Locked Oscillators with High-Order-Division Operation for Microwave Millimeter-wave Signal Generation,”國立中央大學電機工程研究所博士論文, 民國 97 年九月。
[47] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Upperr Saddle River, NJ : Prentice-Hall,1997.
[48] X. Zhang, X. Zhou, and A.S. Daryoush, “A Theoretical and Experimental Study of the Noise Behavior of Subharmonically Injection Locked Local Oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 895-902, May 1992.
[49] Ulrich L. Rohde, Ajay K. Poddar, and Georg Bock, The Design of Modern Microwave Oscillators for Wireless Applications. John Wiley & Sons, Inc. 2005.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2010-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明