參考文獻 |
[1] T. Nishimura, M. Nakashige, T. Akashi, Y. Wakasa, and K. Tanaka, “Eye interface for physically impaired people by genetic eye tracking,” in Proc. Annual Conference on Society of Instrumentation and Control Engineers, Sep. 2007, pp. 828–833.
[2] Z. O. Abu-Faraj, M. J. Mashaalany, H. C. Sleiman, J. L. Heneine, and W. M. Al Katergi, “Design and development of a low-cost eye tracking system for the rehabilitation of the completely locked-in patient,” in Proc. IEEE Annual International Conference on Engineering in Medicine and Biology Society, Aug. 2006, pp. 4905–4908.
[3] Y. L. Chen, “Application of tilt sensors in human–computer mouse interface for people with disabilities,” IEEE Trans. Neural Systems Rehabilitation Engineering, vol. 9, no. 3, pp. 289–294, Sep. 2001.
[4] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical neurophysiology, vol. 113, no. 6, pp. 767–791, Jun. 2002.
[5] E. E. Sutter, “The brain response interface: Communication through visually-induced electrical brain responses,” Journal of Microcomputer Applications, vol. 15, no. 1, pp. 31–45, Jan. 1992.
[6] D. Regan, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine, New York: Elsevier, 1989.
[7] M. Cheng, X. R. Gao, S. K. Gao, and D. F. Xu, “Design and implementation of a brain–computer interface with high transfer rates,” IEEE Trans. Biomedical Engineering, vol. 49, no. 10, pp. 1181–1186, Oct. 2002.
[8] Y. J. Wang, R. P. Wang, X. R. Gao, B. Hong, and S. K. Gao, “A practical VEP-based brain–computer interface,” IEEE Trans. Neural Systems Rehabilitation Engineering, vol. 14, no. 2, pp. 234–239, Jun. 2006.
[9] G. R. Müller-Putz and G. Pfurtscheller, “Control of an electrical prosthesis with an SSVEP-based BCI,” IEEE Trans. Biomedical Engineering, vol. 55, no. 1, pp. 361–364, Jan. 2008.
[10] O. Friman, T. Luth, I. Volosyak, and A. Graser, “Spelling with steady-state visual evoked potentials,” in Proc. International IEEE Engineering Medicine Biology Society Conference Neural Engineering, May 2007, pp. 354–357.
[11] D. Valbuena, M. Cyriacks, O. Friman, I. Volosyak, and A. Graser, “Brain–computer interface for high-level control of rehabilitation robotic systems,” in Proc. IEEE 10th International Conference Rehabilitation Robotics, Jun. 2007, pp. 619–625.
[12] C. Jia, H. L. Xu, B. Hong, X. R. Gao, Z. G. Zhang, and S. K. Gao, “A human–computer interface using SSVEP-based BCI technology,” Foundations Augmented Cognition, vol. 4565, pp. 113–119, Jul. 2007.
[13] X. R. Gao, D. F. Xu, M. Cheng, and S. K. Gao, “A BCI-based environmental controller for the motion-disabled,” IEEE Trans. Neural Systems Rehabilitation Engineering, vol. 11, no. 2, pp. 137–140, Jun. 2003.
[14] P. L. Lee, J. J. Sie, Y. J. Liu, C. H. Wu, M. H. Lee, C. H. Shu, P. H. Li, C. W. Sun, and K. K. Shyu, “An SSVEP-actuated brain–computer interface using phase-tagged flickering sequences: A cursor system,” Annals Biomedical Engineering, vol. 38, no. 7, pp. 2383–2397, Jul. 2010.
[15] Y. J. Wang, X. R. Gao, B. Hong, C. A. Jia, and S. K. Gao, “Brain–computer interfaces based on visual evoked potentials,” IEEE Engineering Medicine Biology Magazine, vol. 27, no. 5, pp. 64–71, Sep./Oct. 2008.
[16] T. Kluge and M. Hartmann, “Phase coherent detection of steady-state evoked potentials: Experimental results and application to brain–computer interfaces,” in Proc. IEEE Annual International Conference Engineering Medicine Biology Society, May 2007, pp. 425–429.
[17] R. Scherer, G. R. Müller, C. Neuper, B. Graimann, and G. Pfurtscheller, “An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate,” IEEE Trans. Biomedical Engineering, vol. 51, no. 6, pp. 979–984, Jun. 2004.
[18] B. Blankertz, M. Krauledat, G. Dornhege, J. Williamson, R. Murray-Smith, and K.-R. Müller, “A note on brain actuated spelling with the Berlin brain–computer interface,” Lecture Notes in Computer Science, vol. 4555, pp. 759–768, Jul. 2007.
[19] J. D. Bayliss, “Use of the evoked potential P3 component for control in a virtual apartment,” IEEE Trans. Neural Systems Rehabilitation Engineering, vol. 11, no. 2, pp. 113–116, Jun. 2003.
[20] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, M. Ang, and C. Laugier, “A brain-controlled wheelchair based on P300 and path guidance,” in Proc. IEEE/RAS-EMBS International Conference Biomedical Robotics Biomechatronics, Feb. 2006, pp. 1101–1106.
[21] J. Millan, F. Renkens, J. Mourino, and W. Gerstner, “Noninvasive brain-actuated control of a mobile robot by human EEG,” IEEE Trans. Biomedical Engineering, vol. 51, no. 6, pp. 1026–1033, Jun. 2004.
[22] D. Taylor, S. Tillery, and A. Schwartz, “Direct cortical control of 3D neuroprosthetic devices,” Science, vol. 296, no. 5574, pp. 1829–1832, 2002.
[23] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. McDarby, “Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment,” EURASIP Journal on Applied Signal Processing, vol. 2005, no. 19, pp. 3156–3164, 2005.
[24] R. Leeb, C. Keinrath, D. Friedman, C. Guger, R. Scherer, C. Neuper, M. Garau, A. Antley, A. Steed, and M. Slater, “Walking by thinking: The brainwaves are crucial, not the muscles!,” Presence: Teleoperators and Virtual Environments, vol. 15, no. 5, pp. 500–514, Oct. 2006.
[25] P. R. Kennedy, R. A. E. Bakay, M. M. Moore, K. Adams, and J. Goldwaithe, “Direct control of a computer from the human central nervous system,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 198–202, Jun. 2000.
[26] M. J. Black, E. Bienenstock, J. P. Donoghue, M. Serruya, W. Wu, and Y. Gao, “Connecting brains with machines: the neural control of 2D cursor movement,” in Proc. First International IEEE EMBS Conference Neural Engineering, 2003, pp. 580–583.
[27] E. Donchin, K. M. Spencer, and R. Wijensinghe, “The mental prosthesis: assessing the speed of a P300-based brain–computer interface,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 174–179, Jun. 2000.
[28] J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P. Tormene, G. E. Holder, and Vaegan, “Visual evoked potentials standard,” Documenta Ophthalmologica, vol. 108, no. 2, pp. 115–123, 2004.
[29] G. Pfurtscheller, C. Neuper, D. Flotzinger, and M. Pregenzer, “EEG-based discrimination between imagination of right and left hand movement,” Electroencephalography clinical neurophysiology, vol. 103, no. 6, pp. 642–651, Dec. 1997.
[30] G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlögl, B. Obermaier, and M. Pregenzer, “Current trends in graz brain–computer interface (BCI) research,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 216–219, Jun. 2000.
[31] W. D. Penny, S. J. Roberts, E. A. Curran, and M. J. Stokes, “EEG-based communication: A pattern recognition approach,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 214–215, Jun. 2000.
[32] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, “An EEG-based brain–computer interface for cursor control,” Electroencephalography and Clinical Neurophysiology, vol. 78, no. 3, pp. 252–259, Mar. 1991.
[33] J. R. Wolpaw and D. J. McFarland, “Multichannel EEG-based brain–computer communication,” Electroencephalography and Clinical Neurophysiology, vol. 90, no. 6, pp. 444–449, Jun. 1994.
[34] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain–computer interface research at the Wadsworth center,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 222–226, Jun. 2000.
[35] N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, “The thought translation device (TTD) for completely paralyzed patients,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 190–193, Jun. 2000.
[36] B. Blankertz, K. R. Müller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw, A. Schlögl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schröder, and N. Birbaumer, “The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials,” IEEE Trans. Biomedical Engineering, vol. 51, no. 6, pp. 1044–1051, Jun. 2004.
[37] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, “A direct brain interface based on event-related potentials,” IEEE Trans. Rehabilitation Engineering, vol. 8, no. 2, pp. 180–185, Jun. 2000.
[38] P. Berg and M. Scherg, “A multiple source approach to the correction of eye artifacts,” Electroencephalography and clinical Neurophysiology, vol. 90, no. 3, pp. 229–241, Mar. 1994.
[39] R. N. Vigario, “Extraction of ocular artifacts from EEG using independent component analysis,” Electroencephalography and clinical Neurophysiology, vol. 103, no. 3, pp. 395–404, 1997.
[40] R. Spehlmann, Evoked potential primer. Boston, MA: Butterworth, 1985.
[41] Burr-Brown, Precision, low power instrumentation amplifiers data sheet, 2005. [Online]. Available: http://focus.ti.com/lit/ds/symlink/ina128.pdf
[42] Analog Devices, 1-/2-/4-Channel Digital Potentiometers data sheet, 2005. [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/AD8400_8402_8403.pdf
[43] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, design tools, and application domains of FPGAs,” IEEE Trans. Industrial Electronics, vol. 54, no. 4, pp. 1810–1823, Aug. 2007.
[44] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial control systems–A review,” IEEE Trans. Industrial Electronics, vol. 54, no. 4, pp. 1824–1842, Aug. 2007.
[45] R. X. Chen, L. G. Chen, and L. Chen, “System design consideration for digital wheelchair controller,” IEEE Trans. Industrial Electronics, vol. 47, no. 4, pp. 898–907, Aug. 2000.
[46] T. N. Chang, B. Cheng, and P. Sriwilaijaroen, “Motion control firmware for high-speed robotic systems,” IEEE Trans. Industrial Electronics, vol. 53, no. 5, pp. 1713–1722, Oct. 2006.
[47] K. Sridharan and T. K. Priya, “The design of a hardware accelerator for real-time complete visibility graph construction and efficient FPGA implementation,” IEEE Trans. Industrial Electronics, vol. 52, no. 4, pp. 1185–1187, Aug. 2005.
[48] H. Abu-Rub, J. Guzinski, Z. Krzeminski, and H. A. Toliyat, “Predictive current control of voltage-source inverters,” IEEE Trans. Industrial Electronics, vol. vol. 51, no. 3, pp. 585–593, Jun. 2004.
[49] M. Aime, G. Gateau, and T. Meynard, “Implementation of a peak current control algorithm within a field programmable gate array,” IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp. 406–418, Feb. 2007.
[50] IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Standard 745-1985, Aug. 1985.
[51] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point arithmetic on FPGA based custom computing machines,” in Proc. IEEE Symposium on FPGAs for Custom Computing Machines, 1995, pp. 155–162.
[52] K. K. Shyu, M. H. Lee, Y. T. Wu, and P. L. Lee, “Implementation of pipelined FastICA on FPGA for real-time blind source separation,” IEEE Trans. Neural Networks, vol. 19, no. 6, pp. 958–970, Jun. 2008.
[53] Zhenghua Wu, Yongxiu Lai, Yang Xia, Dan Wu, and Dezhong Yao, “Stimulator selection in SSVEP-based BCI,” Medical Engineering & Physics, vol. 30, no. 8, pp. 1079–1088, Oct. 2008.
[54] MicroChip, MCP3201 2.7V 12-bit A/D converter with SPI serial interface data sheet, 2008. [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/21290e.pdf
[55] “Cyclone II Device Handbook,” Altera, 2008.
[56] “Quartus II Version 5.0 Handbook,” Altera, 2005.
[57] J. J. Sie, “Implementation of a high-performance steady-state visual evoked potential (SSVEP)-based brain computer interface using frequency and phase encoding flash lights,” M.S. dissertation, National Central University, Jhong-Li, Taoyuan, Taiwan, Jul. 2007.
[58] MicroChip, 25LC1024 1 Mbit SPI Bus Serial EEPROM data sheet, 2008. [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/22064C.pdf
[59] MicroChip, MCP4921 12-Bit DAC with SPI™ interface data sheet, 2007. [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/21897B.pdf
[60] National Semiconductor, LM386 Low voltage audio power amplifier data sheet, 2000. [Online]. Available: http://www.national.com/ds/LM/LM386.pdf
[61] S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe, “Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication,” IEEE Trans. Neural Systems Rehabilitation Engineering, vol. 13, no. 2, pp. 172–178, Jun. 2005.
|