博碩士論文 975201055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.226.87.165
姓名 謝雨奇(Yu-Chi Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以In2Se3為緩衝層之CIGS太陽電池之研究
(Studies of CIGS solar cells with In2Se3 buffer layer)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要以RF-sputter成長In2Se3材料作為Cu(In,Ga)Se2太陽能電池之緩衝層,目的是取代目前普遍使用的CdS。探討沉積緩衝層對CIGS太陽電池造成的影響。太陽電池的元件結構為Mo/CIGS/In2Se3/ZnO/ZnO:Al/Ni/Al,其中Ni/Al是以E-Gun沉積外,其餘結構皆是以RF-sputter的方式成長。
本實驗室目前以成功研製出以In2Se3/Cu(In,Ga)Se2為主之CIGS薄膜太陽電池。Mo背電極是在基板升溫至100 ℃下,以100W的功率沉積30分鐘。CIGS吸收層是以50W的功率沉積35分鐘。In2Se3緩衝層是以70W的功率沉積3分鐘。ZnO透明電極是以50W的功率沉積15分鐘。ZnO:Al透明電極是以50W的功率沉積30分鐘。元件在AM 1.5,100 mW/cm2的標準光源下,得到轉換效率為0.235%,開路電壓為0.28 V,短路電流密度為2 mA/cm2,填充因子為41.8 %,元件面積為0.021 cm2的CIGS太陽電池。
摘要(英) In this study, we investigate the impact of In2Se3 buffer of CIGS solar cells which was used to replace the CdS buffer to avoid the toxic issue.
The structure of the CIGS solar cells is Mo/CIGS/In2Se3/ZnO/ZnO:Al/Ni/Al. The metal contact Ni/Al was deposited by electron beam evaporator. The other films were deposited by RF-sputtering.
Our group has successfully fabricated the CIGS solar cells with In2Se3 buffer layer. The RF power was kept at 100 W to deposit the back contact Mo for 30 minutes and the substrate temperature was 100 ℃.The RF power was kept at 50 W to deposit the absorption layer CIGS for 35 minutes. The RF power was kept at 70 W to deposit the buffer layer In2Se3 for 3 minutes. The RF power was kept at 50 W to deposit the transparent conducting ZnO film for 15 minutes. The RF power was kept at 50 W to deposit the transparent conducting ZnO:Al for 30 minutes. The fabricated cell of 0.021 cm2 active area demonstrates an efficiency of 0.235 % with VOC = 280 mV, JSC = 2 mA/cm2, FF = 41 % under AM 1.5 illumination.
關鍵字(中) ★ 硒化銅銦鎵
★ 硒化銦
★ 太陽能電池
關鍵字(英) ★ CIGS
★ Cu(In
★ Ga)Se2
★ In2Se3
★ solar cell
論文目次 第一章 簡介 ......................................................................................................................... 1
1.1 簡介 ........................................................................................................................ 1
1.2當前各式太陽電池簡介 ......................................................................................... 1
1.3 太陽電池的基本原理 ............................................................................................ 4
1.4 現階段CIGS太陽電池的研究 ............................................................................... 6
1.5 研究動機 ................................................................................................................ 7
1.6 結論 ........................................................................................................................ 8
第二章 CIGS太陽電池的原理與設計 ............................................................................... 9
2.1 簡介 ........................................................................................................................ 9
2.2 鈉玻璃 (soda lime glass) ....................................................................................... 9
2.3 背電極Mo金屬 ....................................................................................................... 9
2.4 CIS/CIGS吸收層 .................................................................................................... 9
2.4.1 黃銅礦結構 ............................................................................................... 10
2.4.2 化學計量組成比(Stoichiometric composition) ........................................ 10
2.4.3 吸收係數 ................................................................................................... 11
2.4.4 Ga摻雜的影響 .......................................................................................... 12
2.5 In2Se3緩衝層的結構與性質 ............................................................................... 13
2.6 CIGS太陽電池的緩衝層的原理 ......................................................................... 14
2.7 ZnO透明電極 ....................................................................................................... 15
2.8 結論 ...................................................................................................................... 16
第三章 實驗步驟與分析儀器 ........................................................................................... 17
3.1 簡介 ...................................................................................................................... 17
3.2薄膜成長儀器 ....................................................................................................... 17
3.3 薄膜特性分析儀器 .............................................................................................. 19
3.3.1 X-ray繞射儀 .............................................................................................. 19
3.3.2 掃瞄式電子顯微鏡 ................................................................................... 19
3.3.3 吸收光譜儀 ............................................................................................... 19
3.3.4 四點探針 ................................................................................................... 19
3.3.5 霍爾量測 ................................................................................................... 20
3.3.6 電流-電壓特性曲線量測 ......................................................................... 20
3.4 元件製作流程 ...................................................................................................... 21
3.5 結論 ...................................................................................................................... 23
第四章 CIGS solar cell薄膜特性與元件測量分析 ......................................................... 24
4.1 簡介 ...................................................................................................................... 24
4.2 各層薄膜成長與分析 .......................................................................................... 24
4.2.1 Mo金屬電極之鍍製 .................................................................................. 24
4.2.2 Cu(In,Ga)Se2吸收層之鍍製 ..................................................................... 27
4.2.3 In2Se3緩衝層之鍍製 ................................................................................ 34
4.2.4 ZnO透明導電膜之鍍製 ............................................................................ 40
4.2.5 Ni/Al金屬電極之鍍製 ............................................................................ 47
4.3 元件薄膜之間接觸電阻的量測 .......................................................................... 48
4.3.1 Mo-CIGS-Ni/Al ......................................................................................... 48
4.3.2 Mo-CIGS-In2Se3-Ni/Al ............................................................................. 49
4.3.3 Mo-In2Se3-Ni/Al ........................................................................................ 50
4.3.4 Mo-ZnO-AZO-Ni/Al ................................................................................. 51
4.3.5 Mo-AZO-Ni/Al .......................................................................................... 52
4.3.6 Ni/Al-AZO-Ni/Al ...................................................................................... 53
4.4 元件之量測 .......................................................................................................... 54
4.4.1 升溫沉積薄膜之元件 ............................................................................... 54
4.4.2 不升溫沉積薄膜之元件 ........................................................................... 56
4.5 結論 ...................................................................................................................... 61
第五章 結論與未來工作 ................................................................................................... 62
附錄A 口試問答錄 ............................................................................................................ 64
參考文獻 ............................................................................................................................. 68
參考文獻 [1] "2008 Solar Technologies Market Report," NREL, January 2010
[2] Takamoto T, Sasaki K, Agui T, Juso H, Yoshida A, Nakaido K. "III-V compound solar cells,” SHARP Technical Journal 100, February 2010.
[3] Zhao J, Wang A, Green MA, Ferrazza F. "Novel 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells.," Appl. Phys. Lett., 1998, vol. 73, pp. 1991–1993.
[4] Qing Wang, Seigo Ito, Michael Gra1tzel, Francisco Fabregat-Santiago, Iva´n Mora-Sero´, Juan Bisquert, Takeru Bessho, and Hachiro Imai, "Characteristics of High Efficiency Dye-Sensitized Solar Cells," J. Phys. Chem., 2006, vol. 110, pp. 25210-25221.
[5] 黃惠良等著,太陽電池,五南圖書出版公司,台北市,西元2009年
[6] Antonio Luque, Steven Hegedus, "Handbook of Photovoltaic Science and Engineering," John Wiley & Sons Ltd, 2003
[7] R. Noufi, A. M. Gabor, J. R. Tuttle, A. L. Tennant, M. A. Contreras, D. S. Albin, J. J.Carapella, “Method of fabricating high-efficiency Cu(In,Ga)(SeS). Sub. 2 thin films for solar cells,” US patent: 5441897(1995)
[8] Ingrid Repins, Miguel A. Contreras1, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, "19.9 %-efficient ZnO/Cds/CuInGaSe2 Solar Cell with 81.2 % Fill Factor," Prog. Photovolt:Res. Appl., 2008, vol. 16, pp. 235.
[9] G. Gordillo and C. Calderόn, “CIS thin film solar cells with evaporated InSe buffer layers,” Sol. Energy Mater. Sol. Cells, 2003, vol. 77, pp. 163.
[10] Ohtake, Y. Ichikawa, M. Okamoto, T. Yamada, A. Konagai, M. Saito, K.,“Cu(InGa)Se2 thin-film solar cells with continuously evaporated Cd-free buffer layers,”Proc. 25th IEEE Photovoltaic Specialist Conf., 1996, pp. 793–796.
[11] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock, "The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates," Thin Solid Films, 2009, vol. 517, pp. 2187.
[12] D. Abou-Rasa, G. Kostorza, D. Bremaudb, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dobelic, "Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells," Thin Solid Films, 2005, vol. 480-481, pp. 433.
[13] Shay, J.L. and J.H. Wernick, “Ternary chalcopyrite semiconductors : Growth,Electronic properties, and applications.” 1975.
[14] J. S. Park, Z. Dong, Sungtae Kim, and J. H.Perepezko, "CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction," J. Appl. Phys., 2000, vol. 87, pp. 8.
[15] Moller, H.J., “Semiconductors for solar cells,” 1993
[16] Su-Huai Wei, S. B. Zhang, and Alex Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties," Appl. Phys. Lett., 1998, vol. 72, pp. 24.
[17] T. Ohtsuka, K. Nakanishi, T. Okamoto, A. Yamada, M. Konagai, and U. Jahn, “Epitaxial Growth of γ-In2Se3 Films by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., 2001, vol. 40, pp. 509.
[18] C. deGroot and J. Moodera, “Growth and characterization of a novel In2Se3 structure,”
J. Appl. Phys., 2001, vol. 89, pp. 4336.
[19] A. Chaiken, K. Nauka, G. A. Gibson, Heon Lee, and C. C. Yang, “Structural and electronic properties of amorphous and polycrystalline In2Se3 films,” J. Appl. Phys., 2003, vol. 94, pp. 2390.
[20] Capasso, F. and G. Maragaritondo, “Heterojunction band discontinuities : Physics and device application.,” Elsevier science, 1987.
[21] Tokio Nakada, Keisuke Furumi, and Akio Kunioka, "High-Efficiency Cadmium-Free Cu(In,Ga)Se2 Thin-Film Solar Cells with Chemically Deposited ZnS Buffer Layers," IEEE Trans. Electron Devices, 1999, vol. 46, pp. 10.
[22] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, "Fabrication of wide-gap Cu(In1-x,Gax)Se2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness," Sol. Energy Mater. Sol. Cells, 2005, vol. 87, pp. 541.
[23] James D. Plummer et al.原著,羅正忠等譯,半導體工程-先進製程與模擬,台灣培生教育出版股份有限公司,台北市,西元2005年。
[24] Donald A. Neamen著,李世鴻譯,半導體物理及元件,美商麥格羅‧希爾國際股份有限公司,台北市,西元2006年。
[25] I. Lauermann, Ch. Loreck, A. Grimm, R. Klenk, H. Mönig, M.Ch. Lux-Steiner, Ch.-H. Fischer, S. Visbeck, T.P. Niesen, "Cu-accumulation at the interface between sputter-(Zn,Mg)O and Cu(In,Ga)(S,Se)2 — A key to understanding the need for buffer layers?," Thin Solid Films, 2007, vol. 515, pp. 6015.
[26] Tung-Po Hsieh, Chia-Chih Chuang, Chung-Shin Wu, Jen-Chuan Chang, Jhe-Wei Guo, Wei-Chien Chen, "Effects of residual copper selenide on CuInGaSe2 solar cells," 34th IEEE Photovoltaic Specialists Conference, 2009, pp. 52-54.
[27] M. Kaelin, D. Rudmann, A.N. Tiwari, "Low cost processing of CIGS thin film solar cells," Solar Energy, 2004, vol. 77, pp. 749.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明