博碩士論文 945401004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.148.145.97
姓名 李宇軒(Yu-Hsuan Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於液晶顯示系統之嵌入式壓縮演算法 及其晶片架構之設計與實現
(Design and Realization of Embedded Compression Algorithm and VLSI Architecturefor LCD Display System )
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 語音密集連接卷積網路應用於小尺寸關鍵詞偵測★ G2LGAN: 對不平衡資料集進行資料擴增應用於晶圓圖缺陷分類
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今的液晶顯示系統中,其功能主要可以分為三個部分,第一部份是streaming part,其最主要的目的在於處理多元化的視訊輸入資料,而第二部分是Digital TV part,它的主要功能在於image scaling、color enhancement及色彩飽和度的加強等,第三部分是LCD panel control part,它負責將所要顯示的資料依據LCD的既定的驅動格式,傳送至LCD panel進行顯示。而在未來的發展趨勢中,顯示畫面顯示率(frame rate)及畫面的解析度(display resolution),都會一致性的往高階應用來發展,這也造成在系統中用於儲存畫面的記憶體(frame memory)及記憶體頻寬(memory bandwidth)大幅增加,因此本論文針對此點提出一個嵌入式壓縮(embedded compression, EC)核心設計來提高系統對於記憶體的使用效率,可分為下列三個部分討論。
首先我們提出VLSI-oriented FELICS演算法,其主要專注在Lossless的應用,此演算法包含simplified adjusted binary code和storage-less Golomb-Rice code,除此之外,針對色彩信號提出color difference pre-processing來增進編碼效率。我們以CMOS 0.13-um來來實現此編碼晶片,其最高throughput可達4.36Gbit/s,支援Full-HD(1920x1080)@60Hz於全彩信號的處理。
在第二部分,我們進而拓展至Losslesss/Near Lossless範疇,主要包含下列技術:(1). associated geometric probability model (AGPM). (2). content-adaptive Golomb-Rice code. (3). geometric-based binary code. (4). rate control mechanism. 以上四項技術主要是考慮到硬體架構設計效能並且兼顧編碼效率,因此在架構設計上,此架構能夠完全的應用pipelining data scheduling及parallel processing技巧來提升硬體執行效率,因為資料相依性的問題已在演算法設計上解決,由實驗結果可以顯示,其編碼效率勝過以快速編碼著稱的FELICS演算法,且僅和編碼效率較好,但演算法複雜度較高的JPEG-LS僅有平均6.17%的差異,除此之外,本演算法的運算資源消耗只需FELCS及JPEG-LS的43%。在硬體效能方面,整個編解碼晶片是以TSMC 0.18-um 1P6M製程和Artisan cell library所建構而成,在雙倍平行的架構下,其最高吞吐率可達 6.4 Gbit/sec,core size為1.82x1.80 mm2,die size為2.33x2.30 mm2,其中logic gate count佔45.30K,on-chip memory使用量是3.8K Byte. 其編解碼處理能力可以完全涵蓋QFHD (3840x2160) @ 30Hz,可藉由multi-level拓展至120Hz的應用上。
第三部分,我們提出一個針對視訊編解碼器的EC演算法,其主要的技術內容涵蓋了ABC-based recompression,side clipping mechanism及average-based prediction。此演算法在2倍的指定壓縮效率(Target compression ratio, TCR)之下,其平均對於PSNR的損耗僅有1.37dB,其運算複雜度對於整體編碼運算而言,僅有平均2.4%的負擔,因此,其非常適用於現今的視訊編碼解系統應用上。
摘要(英) The modern LCD display system can be categorized into three parts: streaming part, digital TV part and LCD panel control part. All three parts exhibits two common features: computation-intensive and bandwidth-intensive. With the rapid progress of semiconductor industry, the computation-intensive issue can be properly handled by parallelism or pipeline processing. Therefore, bandwidth-intensive issue becomes more and more important in this system. The embedded compression (EC) technology is widely applied to save frame memory size and bandwidth requirement.
In lossless EC scenario, the VLSI-oriented FELICS algorithm, which consists of simplified Adjusted Binary Code and Golomb-Rice Code with storage-less k parameter selection, is proposed to provide the lossless compression method for higher throughput applications. Besides, the color difference pre-processing (CDP) is also proposed to improve coding efficiency with simple arithmetic operation. Based on VLSI-oriented FELICS algorithm, the proposed hardware architecture features compactly regular data flow, and two-level parallelism with four-stage pipelining is adopted as the framework of the proposed architecture. The chip is fabricated in TSMC 0.13-um 1P8M CMOS technology with Artisan cell library. The maximum throughput can achieve 4.36 Gbit/sec.
In lossless/near lossless EC scenario, the proposed high-speed EC algorithm comprises three features: (1) The associated geometric-based probability model (AGPM) is developed to construct context-modeling mechanism without context-table. (2) Develop content-adaptive Golomb-Rice code and geometric-based binary code as the entropy coding with minor order of context. (3) Provide the rate control mechanism to guarantee the saving ratio of memory bandwidth and capacity. The entire codec chip is implemented in TSMC 0.18-um 1P6M CMOS technology. The maximum throughput is as high as 6.4 Gbit/sec. Furthermore, with multi-level parallelism, the performance can be extended to QHD (2560x1440)@120Hz and QFHD@120Hz for double frame rate (DFR) technique.
For video coding system, an efficient EC algorithm, including ABC-based recompression, side-clipping mechanism and average-based prediction, is proposed. With proposed EC algorithm, the compression ratio (CR) of 50% can be guaranteed with minor PSNR loss of 1.37db on average. Although EC is an additional function in video coding system, the extra encoding computation load is just 2.4% on average. Consequently, the proposed EC algorithm can be exploited to reduce the frame memory and bandwidth requirement in video coding systems.
關鍵字(中) ★ 內容模型
★ 嵌入式壓縮
★ 超大型積體電路架構
★ 位元率控制
★ 無失真/近似無失真壓縮
關鍵字(英) ★ VLSI architecture.
★ lossless/near-lossless compression
★ rate control
★ Embedded compression (EC)
★ context-modeling
論文目次 Table of Content
Abstract……………………………………………………………………………. i
List of Figures……………………………………………………………………... v
List of Tables……………………………………………………………………… viii
Chapter 1 Introduction………………………………………………………… 1
1.1 An Overview of Modern LCD-TV Display System…………………… 2
1.2 Motivation of Embedded Compression………………………………... 3
1.3 Thesis Organization……………………………………………………. 5
Chapter 2 Background Study of Lossless/Near-Lossless Image Compression Algorithms…………………………………………... 7
2.1 Overview of Existing Data Compression Techniques………………… 8
2.2 FELICS Coding Algorithm……………………………………………. 9
2.2.1 The Description of Prediction Template………………………… 10
2.2.2 The Description of Intensity Distribution Model………………... 11
2.2.3 The Description of Adjusted Binary Code………………………. 12
2.2.4 The Description of Golomb-Rice Code…………………………. 13
2.3 JPEG-LS Coding Algorithm…………………………………………... 14
2.3.1 Context Modeling Technique…………………………………… 16
2.3.2 Non-Linear Prediction…………………………………………... 18
2.3.3 Determination of Coding Parameter in Golomb Coding………... 20
2.3.4 Run-Length Coding……………………………………………... 20
Chapter 3 High Throughput Lossless Embedded Compression Engine……. 22
3.1 Overview of Existing Data Compression Techniques………………… 23
3.1.1 Problem Definition in Original FELICS Algorithm………………. 24
3.1.2 Simplified Adjusted Binary Code with Single-side-geometric-model……………………………………... 27
3.1.3 Storage-less k Parameter Selection in Golomb-Rice Code………... 29
3.1.4 Color Difference Pre-processing…………………………………... 33
3.1.5 Performance Evaluation in Coding Efficiency……………………. 37
3.2 The Proposed Hardware Architecture for VLSI-oriented FELICS Algorithm…………………………………………………………. 39
3.2.1 Design Strategy……………………………………………………. 40
3.2.2 Data Scheduling Exploration……………………………………… 42
3.2.3 The Proposed Architecture of Simplified Adjusted Binary Code and Golomb-Rice Code…………………………………………… 46
3.2.4 Bitstream Generator……………………………………………….. 48
3.2.5 Further Extension to Multi-level Parallelism……………………… 50
3.2.6 CDP Function……………………………………………………... 51
3.3 Experiment Result and Discussion……………………………………….. 51
3.4 Summary………………………………………………………………….. 55
Chapter 4 High Throughput Lossless/Near-Lossless Embedded Compression Engine…………………………………………………………………. 57
4.1 Distinction between EC and Existing Image Compression Algorithms….. 58
4.2 The Proposed High-Speed Lossless/Near Lossless Embedded Compression Algorithm…………………………………………………... 60
4.2.1 Associated Geometric-Based Probability Model………………….. 61
4.2.2 Content-Adaptive Golomb-Rice Code.............................................. 63
4.2.3 Geometric-Based Binary Code……………………………………. 67
4.2.4 High-Speed EC Algorithm with Rate Control Mechanism……….. 68
4.2.5 Decoding Flow Chart……………………………………………… 71
4.2.6 Performance Evaluation…………………………………………… 73
4.3 Proposed VLSI Architecture of High-Speed Embedded Compression Algorithm…………………………………………………………………. 76
4.3.1 Design Strategy Exploration………………………………………. 78
4.3.2 Proposed Hardware Architecture of Primary Function…………… 84
4.4 Experiment Result and Discussion………………...................................... 91
4.4.1 Chip Specification…………………………………………………. 91
4.4.2 Performance evaluation on VLSI architecture…………………….. 92
4.4.3 Extended to multi-level parallelism……………………………….. 95
4.5 Measurement Result………………………………….….………………... 97
4.5.1 Measurement vs Simulation………………………….……………. 98
4.5.2 Memory Access Power Reduction…...……………………………. 104
4.5.3 Voltage Scaling……………………………………………………. 105
4.6 Summary ……………………………………………………………..…... 105
Chapter 5 Embedded Compression for Video Coding System………………… 107
5.1 Background of Related Works…………………………………………... 108
5.2 An Efficient Embedded Compression Algorithm Using Adjusted Binary Code Method ……………………………………………………………. 109
5.2.1 ABC-based Recompression……………………………………….. 109
5.2.2 Side-Clipping Mechanism………………………………………… 111
5.2.3 Average-based Prediction…………………………………………. 112
5.2.4 EC Algorithm Flow Chart…………………………………………. 113
5.2.5 Experiment Result and Discussion………………………………... 115
5.3 Summary………………………………………………………………… 117
Chapter 6 Conclusions and Future Works…………………...…………………. 118
6.1 Conclusions………………….…………………………………………... 118
6.2 Future Works……………………………………………………………. 120
References…………………………………………………………………………. 122
參考文獻 [1] C. T. Liu, “Revolution of the TFT LCD Technology,” IEEE/OSA J. Display Technology, vol. 3, no. 4, pp. 342-350, Dec. 2007.
[2] Hee-Gook Lee, “Strategic Consideration for Design of Digital TV System-in-Chip Products,” in Proc. IEEE Int. Conf. Asian Solid-State Circuits (A-SSCC), Nov. 2007, pp. 1-4.
[3] Yutaka Ishii, “The World of Liquid-Crystal Display TVs-Past, Present, and Future,” IEEE/OSA J. Display Technology, vol. 3, no. 4, pp. 351-360, Dec. 2007.
[4] Jun H. Souk and Jongseo Lee, “Recent Picture Quality Enhancement Technology Based on Human Visual Perception in LCD TVs,” IEEE/OSA J. Display Technology, vol. 3, no. 4, pp. 371-376, Dec. 2007.
[5] Digital Compression and Coding of Continuous Tone Still Images—Requirements and Guidelines, Sept. 1993. ISO/IEC 10918-1, ITU Recommend. T.81.
[6] “JPEG 2000 part 1 final draft international standard,” Int. Standards Org./Int. Electrotech. Comm. (ISO/IEC), ISO/IEC FDIS15 444-1, Dec. 2000.
[7] ISO/IEC JTC1/SC29 WG1 ITU-T SG8 (JPEG/JBIG), CD 14495, “Lossless and near-lossless coding of continuous still images (JPEG-LS),” 1998.
[8] X. Wu and N. D. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. Commun., vol. 45, pp. 437-444, Apr. 1997.
[9] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image compression,” in Proc. IEEE Int. Conf. Data Compression, 1993, pp. 501-510.
[10] “Information technology-Coding of audio-visual objects-Part 2: Visual,” Int. Standards Org./Int. Electrotech. Comm. (ISO/IEC), ISO/IEC 14 49602, 1999.
[11] Joint Vide Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft ITU-T recommendation and final draft international standard of joint video specification (ITU-T Rec. H.263/ISO/IEC 14 496-10 AVC)”, JVTG 050, 2003.
[12] Po-Chih Tseng, Yung-Chi Chang, Yu-Wen Huang, Hung-Chi Fang, Chao-Tung Huang, and Liang-Gee Chen, “Advances in Hardware Architectures for Image and Video Coding-A Survey,” Proceedings of IEEE, vol. 93, no. 1, pp. 184-197, Jan. 2005.
[13] Shao-Yi Chien, Yu-Wen Huang, Ching-Yeh Chen, Homer H. Chen, and Liang-Gee Chen, “Hardware Architecture Design of Video Compression for Multimedia Communication Systems,” IEEE Communication Magazine, pp. 123-131, Aug. 2005.
[14] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, and Chen-Yi Lee, “A Low-Power Dual-Mode Video Decoder for Mobile Applications,” IEEE Communication Magazine, pp. 119-126, Aug. 2006.
[15] Tung-Chien Chen et al, “Analysis and Architecture Design of an HDTV720p 30 Frames/s H.264/AVC Encoder,” IEEE Trans. Circuit Sys. Video Technol., vol. 61, no. 6, pp. 673-688. Jun. 2006.
[16] D. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE, 1958, vol. 140, pp. 1098-1011, Sep. 1952.
[17] S. Colomb, “Run Length Encoding,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 399-401, Jul. 1966.
[18] G.G. Langdon, “An Introduction to Arithmetic Coding,” IBM J. Res. Development, pp. 135-149, Mar. 1984.
[19] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Trans. Inform. Theory, vol. IT-23, no. 2, pp. 399-401, May. 1977.
[20] T. Welsh, “A Technique for high-performance data compression,” IEEE Computer, vol. 17, pp. 8-10, 1984.
[21] L. Yang, R. P. Dick, H. Lekatsas, and S. Chakradhar, “CRAMES: Compressed RAM for Embedded Systems,” Proc. Int. Conf. Hardware/Software Codesign and System Synthesis, pp. 93–98, Sep. 2005.
[22] Lei Yang, H. Lekatsas, R. P. Dick, “High-performance operating system controlled memory compression,” Proc. Int. Conf. Design Automation Conference, pp. 701–704, Jul. 2006.
[23] Jose Luis and Simon Jones, “Gbit/s Lossless Data Compression Hardware,” IEEE Trans. Very Large Scale Integration, vol. 11, no. 3, pp. 499-510, Jun.. 2003.
[24] Mark Milward, Jose Luis Nunez, and David Mulvaney, “Design and implementation of a Lossless Parallel High-Speed Data Compression System,” IEEE Trans. Parallel and Distributed Systems, vol. 15, no. 6, Jun. 2004.
[25] Rizwana Mehboob, Shoab A. Khan, and Zaheer Ahmed, “High Speed Lossless Data Compression Architecture,” in Proc. IEEE Int. Conf. Multitopic, 2006, pp. 84-88.
[26] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1309-1324, Aug. 2000.
[27] M.J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, lossless image compression algorithm,” in Proc. 1996 Data Compression Conference, Snowbird, UT, Mar. 1996, pp. 140-149.
[28] Information Technology – Lossless and Near-Lossless Compression of Continuous-Tone Still Images, 1999. ISO/IEC 14495-1, ITU Recommend. T.87.
[29] M. J. Weinberger, J. Rissanen, and R. Arps, "Applications of universal context modeling to lossless compression of gray-scale images," Journal, IEEE Trans. Image Processing, vol. 5, pp. 575-586, Apr. 1996.
[30] G. G. Langdon Jr., “An adaptive run-length coding algorithm,” IBM Tech. Disclosure Bull., vol. 26, pp. 3783-3785, Dec. 1983.
[31] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-12, pp.399-401, July 1966.
[32] A. Netravali and J.O. Limb, “Picture Coding: A review,” Proc. IEEE, vol, 68, pp. 366-406, 1980.
[33] Li Xiaowen et al, “A Low Power, Fully Pipelined JPEG-LS Encoder for Lossless Image Compression,” in Proc. IEEE Int. Conf. Multimedia and EXPO, 2007, pp. 1906-1909.
[34] Markos Papadoniko Lakis, Vasilleios Pantazis, and Athanasios P. Kakarountas, ”Efficient High-Performance ASIC Implementation of JPEG-LS Encoder,” in Proc. Int. Design Automation and Test in Europe Conf & Exhibition., 2007, pp. 1-6.
[35] Chih-Chi Cheng, Po-Chih Tseng, Chao-Tsung Huang, and Liang-Gee Chen, “Multi-mode embedded compression codec engine for power-aware video coding system,” IEEE Workshop. Signal Processing Systems, 2005, pp. 532-537.
[36] G. G. Langdon Jr. and M. Manohar, “Centering of context-dependent components of prediction error distributions,” Proc. SPIE, vol. 2028,pp. 26–31, July 1993.
[37] M. Ferretti and M. Boffadossi, “A Parallel Pipelined Implementation of LOCO-I for JPEG-LS,” in Proc. IEEE Int. Conf. Pattern Recongnition, 2004, pp769-772.
[38] Xinkai Chen, Hanjun Jiang, XiaoWen Li, Zhihua Wang, “A Novel Comrpession Method for Wireless Image Sensor Node,” in Proc. IEEE Int. Conf. Asian Solid-State Circuits (A-SSCC), Nov. 2007, pp. 184-187.
[39] Chih-Chi Cheng, Po-Chih Tseng, Chao-Tsung Huang, and Liang-Gee Chen, “Multi-mode embedded compression codec engine for power-aware video coding system,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 141-150, Feb.. 2009.
[40] CIC Training Manual (A403), “Introduction to Digital IC Testing,” Jul, 2003.
[41] Tsun-Hsu Chang, “Minimizing Switching Noise in a Power Distribution Network Using External Coupled Resistive Termination,” IEEE Trans. Advanced Packing, vol. 28, no. 4, pp. 754-760, Nov. 2005.
[42] Li-Rong Zheng and Tenhunen, “Fast Modeling of Core Switching Noise on Distributed LRC Power Grid in ULSI Circuits ,” IEEE Trans. Advanced Packing, vol. 24, no. 3, pp. 245-254, Aug. 2001.
[43] Habal H., Mayaram K. and Fiez T.S., “Accurate and Efficient Simulation of Synchronous Digital Switching Noise in Systems on A Chip,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 3, pp. 330-338, Mar. 2005.
[44] Jongbae Park, Hyungsoo Kim, Youchul Jeong, Jingook Kim, Jun So Pak, Dong Gun Kam and Joungho Kim, “Modeling and Measurement of Simultaneous Switching Noise Coupling through Signal via Transition,” IEEE Trans. Advanced Packing, vol. 29, no. 3, pp. 548-559, Aug. 2006.
[45] Vemuru S.R, “Effects of Simultaneous Switching Noise on The Tpered Buffer Design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 5, no. 3, pp. 290-300, Sep. 1997.
[46] Becker W.D, Eckhard J, Frech R.W, Katopis G.A, Klink E, McAllister M.F, McNamara T.G, Muench P, Richter S.R, Smith H, “Modeling, Simulation, and Measurement of Mid-frequency Simultaneous Switching Noise in Computer Systems,” IEEE Trans. Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, vol. 21, no. 2, pp. 157-163, May. 1998.
[47] Yook J.-G, Chandramouli V, Katehi L.P.B, Sakallah K.A, Arabi T.R and Schreyer T.A, “Computation of Switching Noise in Printed Circuit Boards,” IEEE Trans. Components, Packaging, and Manufacturing Technology, Part A: Advanced Packaging, vol. 20, no. 1, pp. 64-75, Mar. 1997.
[48] Nanju Na, Jinwoo Choi, Swaminathan M, Libous J.R, O'Connor D.P, “Modeling and Simulation of Core Switching Noise for ASICs,” IEEE Trans. Advanced Packing, vol. 25, no. 1, pp. 4-11, Feb. 2002.
[49] Tang K.T and Friedman E.G, “Simultaneous Switching Noise in On-chip CMOS Power Distribution Networks,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 4, pp. 487-493, Aug. 2002.
[50] Li Ding and Mazumder P, “Simultaneous Switching Noise Analysis Using Application Specific Device Modeling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp. 1146-1152, Dec. 2003.
[51] Behzad Razavi, “Design of Analog CMOS Integrated Circuit,” McGrawHill, 2001.
[52] Wu T.-L, Chuang H.-H and Wang T.-K, “Overview of Power Integrity Solutions on Package and PCB: Decoupling and EBG Isolation, ”IEEE Trans. Electromagnetic Compatibility, vol. 52, no. 2, pp. 346-356, Dec. 2010.
[53] Jie Gu, Hanyong Eom and Kim C.H, “On-Chip Supply Noise Regulation Using a Low-Power Digital Switched Decoupling Capacitor Circuit,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1765-1775, Jun. 2009.
[54] H.-H. Chen, J.-S. Neely, M.-F, Wang and G. Co, “On-chip Decoupling Capacitor Optimization for Noise and Leakage reduction,“ Proc. Symp. Integrated Circuits and Systems Design, pp. 251-255, 2003.
[55] M. Ang , R. Salem and A. Taylor, “An On-Chip Voltage Regulator Using Switched Decoupling Capacitors,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 438-439, 2000.
[56] J. Gu, R. Harjani and C. Kim, “Distributed Active Decoupling Capacitors for On-Chip Supply Noise Cancellation in Digital VLSI Circuits”, Symp. VLSI Circuits Dig., pp. 216-217, 2006.
[57] Jie Gu; Harjani, R.; Kim, C.H, “Design and Implementation of Active Decoupling Capacitor Circuits for Power Supply Regulation in Digital ICs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 2, pp. 292-301, Feb. 2009.
[58] M. Popovich and E. G. Friedman, “Decoupling Capacitors for Multi-Voltage Power Distribution Systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 3, pp. 217-228, 2006.
[59] A. V. Mezhiba and E. G. Friedman, “Scaling Trends of On-Chip Power Distribution Noise,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 4, pp. 386-394, 2004.
[60] S. Zhao, K. Roy and C.-K. Koh, “Decoupling Capacitance Allocation and Its Application to Power-Supply Noise-Aware Floorplanning,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 4, pp. 81-92, 2002.
[61] Haihua Su, Sapatnekar S.S, and Nassif S.R, “Optimal Decoupling Capacitor Sizing and Placement for Standard-Cell Layout Designs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 4, pp. 428-436, 2003.
[62] Micron Technology Inc, system power calculator for DDR SDRAM, http://www.micron.com/support/part_info/powercalc.
[63] Information Technology-Coding of Audio-Visual Objects-Part2: Visual, ISO/IE 14496-2, 1999.
[64] Draft ITU-Recommendation and Final Draft International Standard of Joint Video Specification, Joint Video Team, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, May 2003.
[65] Tung-Chien et al., Chen “Analysis and Architecture Design of an HDTV720p 30 Frames/s H.264/AVC Encoder,” IEEE Trans. CSVT, vol. 16, no. 6, pp.305-310, June 2006.
[66] T,-Y. Lee, “A New Frame-Recompression Algorithm and its Hardware Design for MPEG-2 Video Decoders,” IEEE Trans. CSVT, vol. 13, no.6, pp. 529-534, June 2003.
[67] H. You, J. M. Jo, and J. C. Jeong, “A hierarchical lossless image compression based on modified Hadmard transform,” in Proc. 10th Workshop on Image Processing and Understanding, 1998, pp.305-310.
[68] N. Memon, “Adaptive coding of DCT coefficients by Golomb-Rice codes,” in Proc. Int. Conf. Image Processing, vol. 1, 1665, pp.516-520.
[69] D. Pau et al.,”MEP-2 Decoding with a Reduced RAM Requisite by ADPCM Recompression Before Storing MPEG Decompressed Data,” U.S patent 5838597, Nov. 1998.
[70] Yongje Lee, Chae-Eun Rhee and Hyuk-Jae Lee, “A New Frame Recompression Algorithm Integrated with H.264 Video Compression,” ISCAS 2007, pp. 1621 - 1624.
[71] HDMI web site, http://www.hdmi.org
[72] DVI web site, http://www.ddwg.org
[73] Gilbert J.M, Doan C.H, Emami S and Shung C.B, “ A 4-Gbps Uncompressed Wireless HD A/V Transceiver Chipset ,“ IEEE Micro, vol. 41, no. 2, pp. 56-64, 2008.
[74] Lawton G, “Wireless HD Video Heats Up,” Computer, vol. 41, no. 12, pp. 18-20, 2008.
[75] Shida T, Sato T, Nakayama H, Kosaka H and Sugiyama K, “Robust HD Video Stream Transmission for Wireless DTV,” IEEE Trans. Consumer Electronics, vol. 53, no. 1, pp. 96-99, 2007.
[76] Singh H, Jisung Oh, Changyeul Kweon, Xiangping Qin, Huai-Rong Shao and Chiu Ngo, “A 60 GHz Wireless Network for Enabling Uncompressed Video Communication,” IEEE Mag. Communication, vol. 46, no. 12, pp. 71-78, 2008.
[77] Siamarou A.G, “Broadband wireless local-area networks at millimeter waves around 60 GHz ,” IEEE Mag. Antennas and Propagation, vol. 45, no. 1, pp. 177-181, 2003.
[78] Manohara M, Mudumbai R, Gibson J and Madhow U, “Error correction scheme for uncompressed HD video over wireless ,” in Proc. IEEE Int. Conf. Multimedia EXPO, 2009, pp. 802-805.
[79] Parsa A and Razavi B, “A New Transceiver Architecture for the 60-GHz Band,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 751-762, Mar. 2009.
[80] Razavi B, “Design of Millimeter-Wave CMOS Radios: A Tutorial,” IEEE Trans. Circuits Syst Part I, vol. 56, no. 1, pp. 4-16, Jun. 2009.
[81] Razavi B, “ A Millimeter-Wave Circuit Technique ,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2090-2098, Sep. 2008.
[82] Razavi B, “Gadgets Gab at 60 Ghz,” IEEE Spectrum, vol. 45, no. 2, pp. 46-58, Feb. 2008.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明