博碩士論文 975201066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.147.47.15
姓名 廖耕瑩(Geng-Ying Liau)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 銻化銦鎵/銻化鋁 高電洞遷移率異質接面場效電晶體之發展
(Development of InGaSb/AlSb High Hole Mobility HFET)
相關論文
★ 次微米氮化鎵電晶體之製程與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析
★ 砷化銦/銻化鋁金屬-氧化物-半導體高電子遷移率電晶體之發展★ 砷化銦/銻化鋁高電子遷移率場效電晶體製程開發與元件特性之研究
★ 砷化銦/銻化鋁高電子遷移率場效電晶體之鈍化製程發展與元件特性研究★ 銻化物高電子遷移率場效電晶體之閘極微縮製程發展與元件特性研究
★ 砷化銦/銻化鋁高電子遷移率場效電晶體之次微米元件製程改善與元件衰化機構分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 銻化物系列已逐漸被評估為具有高潛力的材料應用於數位電路功能,其中銻化銦鎵合金系統擁有所有三五族化合物半導體塊材中最高的電洞遷移率,而為了實現互補式電路的需求,低功率損耗跟高電洞遷移率的傳輸特性是必須的。基於上述前提下,第一型態能帶結構的銻化銦鎵/銻化鋁異質接面場效電晶體則成為了最佳的候選者,除具有足夠的價帶位障使電洞載子有效地被侷限,更可藉由應力產生能帶分裂來降低能帶間載子的散射,並降低電洞有效質量,進一步提升電洞遷移率。
我們首先對磊晶材料進行物性分析,包含有霍爾量測、表面粗糙度、以及應力對能帶結構之變化,再來是針對元件部分進行電性上的分析,共分為三大部分,第一部份為研究不同蕭特基閘極元件特性,分析傳統鈦閘極與高滲透性的鉑閘極對元件的參數影響;第二部份為鈍化元件的發展,為了使元件暴露於大氣環境下能夠長時間保存,我們提出兩種元件鈍化的製作方式,分別為閘極後鈍化與元件製作前鈍化製程;第三部份為開發次微米T型閘極元件,在閘極長度為0.25μm,源極與汲極間距2μm的元件上汲極飽和電流於汲極偏壓為-3.0V時得到67mA/mm,峯值轉導58mS/mm,高頻增益部分fT、fMAX分別為6.15GHz與17.1GHz,電流增益截止頻率與閘極長度乘積達1.54GHz-μm。
摘要(英) Sb-based materials are considered to be high potential for high-speed logic and digital electronics due to their highest electron and hole mobilities among all III-V compounds. Added by their low-power consumption, complementary circuit devices can thus be realized using the amterials system. Type-I band- aligned InGaSb/AlSb two-dimensional hole gases are an excellent candidate for developing heterojunction field-effect transistors considering good hole confinement and compressive stress status, which make feasible further enhancement of hole transport properties in the quantum well.
We analyze epitaxial materials using Hall mea surements, AFM, and PL to characterize transport properties, surface roughness, and band structure. The optimized epitaxyies are fabricated into devices and characterized electrically. Three parts are studied: the first one is the effect of different Schottky gate metals and thermal stability on device performance; the second one is the impact of different passivation approaches, which primarily include the passivation after Schottky gates and the passivation before ohmic contacts, on the device parameters; and the third one is the development of submicron T-gate devices using e-beam writing lithography. In a device with 0.25μm gate length and 2μm source-to-drain spacing, dc performance of IDSS=67mA/mm and gm,peak= 58mS/mm and rf performance of fT=6.15GHz and an fMAX=17.1GHz at a drain voltage of -3.0V are successfully demonstrated. An fT×LG product is as high as 1.54GHz-?m.
關鍵字(中) ★ 銻
★ T型閘極
★ 電子束
★ 銻化鋁
★ 異質接面場效電晶體
★ 電洞遷移率
★ 銻化鎵
★ 銻化銦鎵
關鍵字(英) ★ e-beam
★ T-gate
★ antimonide
★ hall mobility
★ HFET
★ InGaSb
★ GaSb
★ AlSb
論文目次 目錄
摘要 I
Abstract V
誌謝.………………………………………………………………………………………...VI
目錄 VII
圖目錄 X
表目錄 XVII
第一章 導論 1
1-1研究動機 1
1-2電洞通道異質接面場效電晶體之發展現況 4
1-3論文架構 12
第二章 磊晶與材料物性分析 13
2-1前言 13
2-2電洞通道之HFET磊晶材料與結構 13
2-3應力對能帶結構的影響 26
2-3-1理論計算 26
2-3-2光激發螢光光譜實驗 35
2-4結論…………………………………………………………………………..........35
第三章製程發展與元件製作 40
3-1前言 40
3-2元件製作流程 40
3-2-1歐姆接觸製作 44
3-2-2蕭特基接觸製作 47
3-2-3 InGaSb/AlSb HFETs鈍化製程的發展 53
3-3 結論 55
第四章 P型通道銻化銦鎵/銻化鋁HFET之元件特性 56
4-1前言 56
4-2 P型通道元件 56
4-2-1 P型通道InxGa1-xSb/AlSb HFET元件 56
4-2-2 In0.44Ga0.56Sb/AlSb HFET元件特性 62
4-2-3鉑閘極In0.44Ga0.56Sb/AlSb HFET元件特性 67
4-3鈍化元件發展 76
4-3-1閘極後鈍化之元件特性 77
4-3-2製程前鈍化之元件特性 89
4-4次微米元件特性 100
4-5結論 107
第五章 元件討論與比較 108
5-1前言 108
5-2不同蕭特基閘極金屬對元件性能的影響 108
5-3鈍化製程對元件性能之影響 116
5-3-1閘極後鈍化之元件特性討論 116
5-3-2製程前鈍化之元件特性討論 122
5-4次微米元件之討論 127
5-5結論 133
第六章 結論與未來發展 134
參考文獻 137
附錄1不同蕭特基閘極元件製作流程 139
附錄2閘極後鈍化元件製作流程 144
附錄3製程前鈍化元件製作流程 149
參考文獻 [1]. J. B. Boos, W. Kruppa, B. R. Bennet, D. Park and S. W. Kirchofer, “AlSb/InAs HEMTs for low-voltage, high-speed applications,“ IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1869-1875, 1998.
[2]. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, no. 2, pp. 255-258, 1992.
[3]. C. A. Chang, R. Ludeke, L. L. Chang and L. Esaki, “Molecular-beam epitaxy(MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, 1977.
[4]. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima and M. kimata, “Molecular beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, no. 12, pp. 2091-2096, 1978.
[5]. R. Ludeke, “Electronic properties of (100) surfaces of GaSb, InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, no. 3, pp. 304-314, 1978.
[6]. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, no. 12, 1989.
[7]. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Lett., vol. 89, no. 11, pp. 5815-5875, 2001.
[8]. F. L. Schuermeyer, P. Cook, E. Martinez, and J. Tantillo, “Band alignment in heterostructures”, Appl. Phys. Lett., vol. 55, no. 18, pp. 1877-1878, 1989.
[9]. L. F. Luo, K. F. Longenbach and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, no. 12, pp. 567-569, 1990.
[10]. P. P. Ruden, M. Shur, D. K. Arch, P. R. Daniels, D. E. Grider and T. E. Nohava, “Quantum well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors,“ IEEE Trans. Electron Devices, vol. 36, no. 11, pp. 2371-2379 1989.
[11]. B. R. Bennett, M. G. Ancona, J. B. Boos and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., vol. 91, no. 4, pp. 042104, 2007.
[12]. J. B. Boos, B.R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electron. Lett., vol. 43, no. 15, pp. 834-835, 2007.
[13]. M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding and Robert Chau, “High performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications,” 2008 IEEE International Electron Devices Meeting, IEDM 2008, pp. 1-4, 2008.
[14]. H. K. Lin, “The Design, Growth, and Characterization of Antimonide-Based Composite-Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, 2004.
[15]. S. L. Chuang, “Physics of Optoelectronis Devices,” A Wiley-Interscience Publicaiton.
[16]. L. Snider, I. H. Tan and E. L. Hu, “Electron states in mesa-etched one-dimensional quantum well wires,” J. of Appl. Phys., vol. 68, no. 6, pp. 2849-2853, 1990.
[17]. I. H. Tan, G. L. Snider, and E. L. Hu, “A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh”, J. Appl. Phys., vol. 68, no. 8, pp. 4071-4076, 1990.
[18]. N. Chaturvedi, U. Zeimer, J. Würfl and G. Tränkle, ”Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, no. 2, pp. 175-179, 2006.
[19]. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron, vol. 49, no. 12, pp. 1875-1895, 2005.
[20]. S. Kim, I. Adesida and H. Hwang, “Measurements of thermally induced nanometer-scale diffusion depth of Pt/Ti/Pt/Au gate metallization on InAlAs/InGaAs high electron mobility transistors,” Appl. Phys. Lett., vol. 87, no. 23 pp. 1-3, 2005.
[21]. U. K. Mishra, P. Parikh, Y. F. Wu, “AlGaN/GaN HEMTs : Anoverview of device operation and application,” Electrical & Computer Engineering Department, Engineering, University of California, Santa Barbara.
[22]. F. Ren, Z. B. Hao, L. Wang, L. Wang, H. T. Li and Y. Luo, “Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaNhigh electron mobility transistors,” Chin. Phys. B, vol. 19, no. 1, pp. 017306, 2010.
[23]. E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure filed-effect transistors,” J. Appl. Phys., vol. 88, no. 10, pp. 5951-5958, 2000.
[24]. W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 80, no. 17, pp. 3207-3209, 2002.
[25]. X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Liau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterization of enhanced barrier AlGaN/GaN HFET,” IEEE Electron Lett., vol. 35, no. 7, pp. 602-603, 1999.
指導教授 林恒光(Heng-Kuang Lin) 審核日期 2010-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明