博碩士論文 965201014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.144.123.8
姓名 洪君岳(Jyun-Yue Hong)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於植入式生醫系統的適應性高電壓電刺激器與阻抗量測電路之分析與設計
(Analysis and Design of an Adaptive High-Voltage Electrical Stimulator and Impedance Measurement Circuitry for Implantable Biomedical Systems)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著醫學科學與超大型積體電路的快速發展,應用在植入人體內的醫用電子設備也不斷演進,發展至今已可被應用於調節生理功能、刺激神經、肌肉及治療多種疾病。
本論文的設計為一個應用於植入式視覺輔具的電刺激器。電刺激器必須透過電極作為介面才能對神經或肌肉進行電刺激的動作。然而電極-組織介面阻抗可能會因接觸不良、電極大小與材質的差異,又或者電極本體受刺激電流、環境等因素而產生變化,其變異範圍在10–100KΩ。當介面阻抗值過大時,刺激電流會受到供應電壓的限制,無法在刺激週期內達成有效的電刺激。
為了讓電刺激器能滿足阻抗變異的需求,根據阻抗變異與電刺激參數的設定,論文中提出了一個可產生三倍供應電壓輸出的高電壓輸出級驅動電路作為電壓控制電刺激器的想法,並以台積電0.18μm 互補式金氧半導體的標準製程實現。其好處是不需花費其他昂貴的特殊製程,又可以與其他電路整合於同一晶片。
在進行電刺激之前,使用阻抗量測電路測量介面阻抗,而數位脈波寬度調變電路可針對不同介面阻抗與刺激電荷量的需求,產生出適當的脈波寬度,使得高電壓輸出級驅動電路能有效的調整刺激電荷量,進而使得植入式電刺激器達到最佳的功效。
摘要(英) With the rapid development of medical science and very large scale integration circuit, medical electronic devices which are used to implant in the human body have been evolved. Furthermore, some medical electronic devices have already been applied for regulating human’s physiological functions, stimulating nerves, muscles, and treatment of many diseases. This thesis aims to design an electrical stimulator for implanted visual prosthesis. The designed electrical stimulator stimulates nerves or muscles using electrodes as the interface. In general, the electrode-tissue interface impedance may changes in the rage of 10–100 KΩ due to poor contact, the electrode size and material differences, or electrode-self by stimulus current and environmental factors, and so on. Using impedance measurement circuit to measure interface impedance before stimulated, and this thesis proposes the digital pulse width modulator to produce proper pulse widths for different interface impedances, enabling electrical stimulator to adjust the stimulus charge, thus making electrical stimulator to achieve the best effect.
However, the stimulus current is limited by the supply voltage, effective stimulating may be unable to be achieved in a stimulus period when the interface impedance is too large. In order for electrical stimulator to satisfy the requirement of impedance variation, this thesis also proposes a high voltage output driver, which can generate three times supply voltage output, for the voltage-controlled electrical stimulator. Moreover, such a high voltage output driver accommodating to impedance variation and stimulus parameter setting is implemented in TSMC 0.18μm standard CMOS technology to demonstrate the feasibility of the proposed electrical stimulator. An advantage of the designed high voltage output driver is that it can be fully integrated within other circuit without extra process costs.
關鍵字(中) ★ 數位脈波寬度調變電路
★ 阻抗量測電路
★ 電極組織介面
★ 高電壓電路設計
★ 植入式電刺激器
關鍵字(英) ★ digital pulse width modulation
★ impedance measurement circuits
★ electrode-tissue contact
★ high voltage techniques
★ implantable electrical simulators
論文目次 摘要 ............................................................................................................................................ i
Abstract .................................................................................................................................... ii
致謝 .......................................................................................................................................... iii
目錄 .......................................................................................................................................... iv
圖目錄 ..................................................................................................................................... vii
表目錄 ....................................................................................................................................... x
第一章 緒論 ........................................................................................................................ 1
1.1 研究背景 ...................................................................................................................... 1
1.2 研究動機 ...................................................................................................................... 3
1.3 論文架構 ...................................................................................................................... 3
第二章 植入式功能性電刺激系統 .................................................................................... 4
2.1 植入式功能性電刺激的應用 ...................................................................................... 4
2.2 植入式視覺輔具 .......................................................................................................... 5
2.2.1 視覺的生成 ............................................................................................................ 6
2.2.2 利用電刺激產生視覺反應 .................................................................................... 7
2.2.3 無線視覺輔具系統 ................................................................................................ 9
2.3 電刺激模式與參數 .................................................................................................... 10
2.3.1 電極特性及其電路模型 ...................................................................................... 10
2.3.2 電刺激型式 .......................................................................................................... 12
2.3.3 電刺激參數 .......................................................................................................... 14
2.4 電路設計考量 ............................................................................................................ 16
第三章 高電壓輸出級驅動電路設計 .............................................................................. 18
3.1 高電壓輸出級驅動電路架構 .................................................................................... 18
3.1.1 電晶體的崩潰問題 .............................................................................................. 20
3.1.2 使用Deep-N-well製程 ......................................................................................... 21
3.2 電位轉移器 ................................................................................................................ 22
3.3 輸出級驅動電路 ........................................................................................................ 25
3.3.1 靜態操作分析 ...................................................................................................... 26
3.3.2 暫態操作分析 ...................................................................................................... 28
3.3.3 轉換效能分析 ...................................................................................................... 31
第四章 阻抗量測電路設計 .............................................................................................. 34
4.1 阻抗量測電路架構 .................................................................................................... 34
4.2 儀表放大器 ................................................................................................................ 36
4.2.1 傳統式儀表放大器 .............................................................................................. 37
4.2.2 電流模式儀表放大器 .......................................................................................... 38
4.3 類比數位轉換器之介紹 ............................................................................................ 42
4.4 快閃式類比數位轉換器 ............................................................................................ 45
4.4.1 比較器 .................................................................................................................. 46
4.4.2 泡沫錯誤的偵測與更正 ...................................................................................... 48
4.4.3 編碼器 .................................................................................................................. 49
第五章 數位脈波寬度調變電路設計 .............................................................................. 51
5.1 數位脈波寬度調變電路架構 .................................................................................... 51
5.2 查表與轉換編碼器 .................................................................................................... 52
5.3 數位脈波寬度調變電路 ............................................................................................ 57
第六章 電路模擬與晶片量測 .......................................................................................... 62
6.1 高電壓輸出級驅動電路模擬結果 ............................................................................ 62
6.1.1 電位轉移器模擬結果 .......................................................................................... 62
6.1.2 輸出級驅動電路模擬結果 .................................................................................. 64
6.2 阻抗量測電路模擬結果 ............................................................................................ 70
6.2.1 儀表放大器模擬結果 .......................................................................................... 70
6.2.2 快閃式類比數位轉換器模擬結果 ...................................................................... 73
6.3 數位脈波調變電路模擬結果 .................................................................................... 77
6.4 文獻比較 .................................................................................................................... 80
6.5 高電壓輸出級驅動電路之晶片佈局與量測 ............................................................ 82
6.5.1 佈局考量 .............................................................................................................. 82
6.5.2 量測考量 .............................................................................................................. 84
6.5.3 量測結果 .............................................................................................................. 86
第七章 結論 ...................................................................................................................... 90
7.1 結論 ............................................................................................................................ 90
7.2 未來展望 .................................................................................................................... 91
參考文獻 ................................................................................................................................. 92
參考文獻 [1] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional electrotherapy: stimulation of peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Arch. Phys. Med. Rehabil., vol. 42, pp. 101-105, Feb. 1961.
[2] A. Kralj, T. Bajd, R. Turk, J. Krajnik, and H. Benko, “Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES,” J.
Rehabil. R&D, vol. 20, pp. 3-20, Jul. 1983.
[3] C. W. Caldwell and J. B. Reswick, “A percutaneous wire electrode for chronic research use,” IEEE Trans. Biomed. Eng., vol. 22, no.5, pp. 429-432, Sep. 1975.
[4] D. R. McNeal, R. J. Nakai, P. Meadows, and W. Tu, “Open-loop control of the freely-swinging paralyzed leg,” IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp.895-905,
Sep. 1989.
[5] M. Mahadevappa, J. D. Weiland, D. Yanai, I Fine, R. J. Greenberg, and M. S. Humayun,“Perceptual thresholds and electrode impedance in tree retinal prosthesis subjects,”IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no. 2, pp. 201-206, Jun. 2005.
[6] A. P. Chu, K. Morris, R. J. Greenberg, and D. M. Zhou, “Stimulus induced pH changes in retinal implant,” Proc. 26th Annu. Int. Conf. IEEE EMBS, San Francisco, CA, vol. 2,
pp. 4160-4162, Sep. 2004.
[7] L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, Dec. 2004.
[8] J. Georgiou and C. Toumazou, “A 126-μW cochlear chip for a totally implantable system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 430-443, Feb. 2005.
[9] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” ISSCC Dig. Tech. Papers, pp. 228-230, Feb. 2004.
[10] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” Proc. ISCAS, pp. 2197-2200, May 2006.
[11] M. Sivaprakasam, W. Liu, G. Wang, J. D. Weiland, and M. S. Humayum, “Architecture tradeoffs in high-density microstimulators for retinal prosthesis,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2629-2641, Dec. 2005.
[12] https://www.blindness.org
[13] http://webvision.med.utah.edu
[14] J. D. Weiland and M. S. Humayun, “Intraocular retinal prosthesis,” IEEE Eng. Med. Biol. Mag., vol. 25, pp. 60-66, Sep. 2006.
[15] J. D. Weiland, D. Yanai, M. Mahadevappa, R. Williamson, B. V. Mech, G. Y. Fujii, J. Little, R. J. Greenberg, E. de Juan Jr., and M. S. Humayun, “Electrical stimulation of retina in blind humans,” Proc. 25th Annu. Int. Conf. IEEE EMBS, Cancun, Mexico, vol. 3, pp. 2021-2022, Sep. 2003.
[16] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, “Artificial means for restoring vision,” BMJ, vol. 330, pp. 30-33, Jan. 2005.
[17] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, “Reading speed with a pixelized vision system,” J. Opt. Soc. Am. A, vol. 9, no. 5, pp. 673-677, May 1992.
[18] R. W Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, “Facial recognition using simulated prosthetic pixelized vision,” Invest. Ophthalmol. Vis. Sci., vol. 44, no. 11, pp. 5035-5042, Nov. 2003.
[19] W. Mokwa, “MEMS technologies for epiretinal stimulation of the retina,” J. Micromech. Microeng., vol. 14, no. 9, S12-S16, Sep. 2004.
[20] J. G. Webster, “Medical instrumentation application and design,” 3rd ed. New York: Wiley, Aug. 1997.
[21] S. Shah, A. Chu, D. Zhou, R. Greenberg, D. Guven, M. S. Humayun, and J. D. Weiland,“Intraocular impedance as a function of the position in the eye, electrode material and electrode size,” Proc. 26th Annu. Int. Conf. IEEE EMBS,San Francisco, CA, vol. 2, pp. 4169-4171, Sep. 2004.
[22] J. J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6nA dc error for 1-mA full-scale stimulation,”IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 3, pp. 172-183, Sep. 2007.
[23] M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,”IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 763-771, Mar. 2005.
[24] J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array: design considerations,” IEEE Eng. Med. Biol. Mag., vol. 24, no. 12, pp. 14-21, Sep. 2005.
[25] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. Juan, J. D. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE J. Solid-State Circuits, vol. 35, no.10, pp. 1487-1497, Oct. 2000.
[26] N. Dommel, Y. T. Wong, P. J. Preston, T. Lehmann, N. H. Lovell, and G. J. Suaning, “The design and testing of an epi-retinal vision prosthesis neurostimulator capable of
concurrent parallel stimulation,” Proc. 28th Annu. Int. Conf. IEEE EMBS, New York, USA, vol. 12, pp. 4700-4709, Sep. 2006.
[27] M. Ortmanns, N. Unger, A. Rocke, M. Gehrke, and H. J. Tietdke, “A 0.1mm2, digitally programmable nerve stimulation pad cell with high-voltage capability for a retinal implant,” ISSCC Dig. Tech. Papers, pp. 89-91, Feb. 2006.
[28] S. Ethier, M. Sawan, E. M. Aboulhamid, and M. E. Gamal, “A ±9V fully integrated CMOS electrode driver for high-impedance microstimulation,” Proc. 52nd IEEE Int.
Midwest Symp. Circuits Syst., Cancun, Mexico, pp. 192-195, Aug. 2009.
[29] P. E. Allen and D. R. Holberg, “CMOS analog circuit design,” 2nd ed. New York: Oxford, Jan. 2002.
[30] D. Seo, H. Dabag, Y. Guo, M. Mishra, and G. H. McAllister, “High-voltage-tolerant analog circuit design in deep-submicrometer CMOS technologies,” IEEE Trans.
Circuits Syst., vol. 54, no. 10, pp. 2159-2166, Oct. 2007.
[31] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, “A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 576-583, Mar. 2005.
[32] P. Swaroop, A. J. Vasani, and M. Ghovanloo, “A high-voltage output driver for implantable biomedical stimulators and I/O applications,” Proc. 49th IEEE Int. Midwest Symp. Circuits Syst., Puerto Rico, pp. 566-569, Aug. 2006.
[33] A. J. Annema, G. J. G. M. Geelen, and P. C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 528-538, Mar.2001.
[34] S. Rajapandian, K. Shepard, P. Hazucha, and T. Karnik, “High-tension power delivery: Operating 0.18μm CMOS digital logic at 5.4V,” ISSCC Dig. Tech. Papers, vol. 16, no.4, pp. 298-598, Feb. 2005.
[35] http://www.tsmc.com/download/enliterature/html-newsletter/April04/Quality&Reliability/index.html
[36] F. Laugere, R. M. Guijt, J. Bastemeijer, G. V. D. Steen, A. Berthold, E. Baltussen, P. Sarro, G. W. K. V. Dedem, M. Vellekoop, and A. Bossche, “On-chip contactless
four-electrode conductivity detection for capillary electrophoresis devices,” Anal. Chem., vol. 75, no. 2, pp. 306-312, Jan. 2003.
[37] A. Uranga, J. Sacristan, T. Oses, and N. Barniol, “Electrode-tissue impedance measurement CMOS ASIC for functional electrical stimulation neuroprostheses,” IEEE
Trans. Instrum. Meas., vol. 56, no. 5, pp. 2043-2050, Oct. 2007.
[38] J. M. Torrents and R. P-Areny, “Error analysis in two-terminal impedance measurements with residual correction,” IEEE Trans. Instrum. Meas., vol. 54, no. 5, pp.2113-2116, Oct. 2005.
[39] A. Yufera, A. Rueda, J. M. Munoz, R. Doldan, G. Leger, and E. O. R-Villegas, “A tissue impedance measurement chip for myocardial ischemia detection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2620-2628, Dec. 2005.
[40] A. Uehara, D. C. Ng, K. Kagawa, T. Tokuda, J. Ohta, and M. Nunoshita, “CMOS retinal prosthesis with on-chip electrode impedance measurement,” IEEE Electron. Lett., vol. 40, no. 10, pp. 582-584, May 2004.
[41] A. S. Sedra and K. C. Smith, “Microelectronic circuits,” 5th ed. New York: Oxford, Aug. 2007.
[42] A. Harb and M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier,” Proc. ISCAS, vol. 6,pp. 97-100, May 1999.
[43] G. Lesbros and M. Sawan, “Multiparameters monitoring for long term in-vivo characterization of electrode-tissues contacts,” Proc. ISCAS, pp. 25-28, Dec. 2006.
[44] A. Harb, Y. Hu, M. Sawan, A. Abdelkerim, and M. M. Elhilali, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated
Circuits and Signal Processing, vol. 39, pp. 39-54, Mon. 2004.
[45] J. Terada, Y. Matsuya, F. Morisawa, and Y. Kado, “8-mW, 1-V, 100-Msps, 6-bit A/D converter using a trans-conductance latched comparator,” Proc. 2nd IEEE Asia Pacific Conf. ASICs, pp. 53-56, Aug. 2000.
[46] E. Sall, M. Vesterbacka, and K. O. Andersson, “A study of digital decoders in flash analog-to-digital converters,” Proc. ISCAS, vol. 1, pp. 129-132, May 2004.
[47] S. Franco, “Electric circuits fundamentals,” 1st ed. New York: Oxford, Aug. 1994.
[48] E. Koutroulis, A. Dollas, and K. Kalaitzakis, “High frequency pulse width modulation implementation using FPGA and CPLD ICs,” Science Direct, J. Syst. Arch., vol. 52, pp.
332-334, Jun. 2006.
[49] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency digital pwm controller IC for DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438-446, Jan.2003.
[50] P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” Proc. IEEE BioCAS, London, UK, pp. 206-209, Nov. 2006.
[51] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, “A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications,” IEEE J.
Microelectromech. Syst., vol. 6, no. 4, pp. 977-988, Aug. 2008.
[52] C. C. Wang, C. C. Huang, Y. C. Liu, V. Pikov, and D. Shmilovitz, “A mini-invasive multi-function biomedical pressure measurement system ASIC,” Proc. ISCAS, pp.
2936-2939, May 2010.
[53] W. Qu, S. K. Islam, M. R. Mahfouz, M. R. Haider, G. To, and S. Mostafa, “Microcantilever array pressure measurement system for biomedical instrumentation,”IEEE Sensors Journal, vol. 10, no. 2, pp. 321-330, Feb. 2010.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2010-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明