博碩士論文 965201012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.16.203.27
姓名 林昆毅(Kun-Yi Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於醫療植入式通訊服務頻帶之分數型頻率合成器之研製
(The Implementation of Fractional Frequency Synthesizer for Medical Implant Communication Service (MICS) Band)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999 年美國聯邦通訊委員會制定了一個工作頻率的範圍在402~405MHz 並有十個頻道寬為300kHz 的無線頻帶稱作醫療植入式通訊服務。其應用的範圍適合具完全積體化的極低功耗並能在短距離下更快速的資料傳輸速度的人體植入式電子輔具。在設計講求小面積,低功率消耗的植入式視覺輔具的分數型頻率合成器的過程中,我們利用降低金屬繞線電感以增加品質因素以及降低壓控振盪器KVCO 的方式提升振盪器的相位誤差的效能。最後使用TMSC 0.18um 標準CMOS 製程使用1.5V 的系統電壓實現了一個核心面積為1.56mm2,功率消耗為2.93mW,佈局後模擬頻率鎖定時間小於100us 而量測之相位雜訊在160kHz 處為-100dBc/Hz 並符合MICS 系統的分數型頻率合成器。
摘要(英) The 402-405MHz medical implant communication service (MICS) has been allocated by US Federal Communication Commission (FCC) in 1999 to provide 10 channels with 300 kHz bandwidth, of which application is suitable for full integration human implantable prosthetics with ultra-low power consumption and higher data rate in a short distance. In the thesis, a fractional frequency synthesizer is designed for implantable visual prosthetics which aims at small area and low power consumption, reduction of parasitic resistance of metal spiral inductor and low KVCO of voltage-controlled oscillator so as to realize an MICS-compatible fractional frequency synthesizer with core area of 1.56mm2, power consumption of 2.93mW, post-layout-simulation locking time of less than 100us, and measured phase noise of -100dBc/Hz at 160kHz offset for 1.5V supply voltage in TSMC 0.18 mm standard CMOS process.
關鍵字(中) ★ 鎖相迴路
★ 非整數型頻率合成器
★ 醫療植入式通訊服務
★ 和差積分調變器
關鍵字(英) ★ phase-locked loop (PLL)
★ fractional frequency synthesizer
★ Medical Implant Communication Service (MICS)
★ sigma-delta modulator
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 6
第二章 鎖相迴路之基本理論與電路 7
2.1 整數型鎖相迴路 7
2.1.1 壓控振盪器 8
2.1.2 除頻器 15
2.1.3 相位頻率偵測器 17
2.1.4 電荷幫浦 18
2.1.5 迴路濾波器 20
2.2 分數型鎖相迴路 21
2.2.1 分數型鎖相迴路基本原理 22
2.2.2 和差調變器之介紹 23
2.2.3 多級和差調變器(MASH結構) 28
2.3 線性數學模型理論 30
2.4 鎖相迴路的行為性模擬 36
2.4.1 Matlab的Simulink軟體 36
2.4.2 Agilent的ADS軟體 39
第三章 頻率合成器之實現 41
3.1 電路設計之考量 41
3.2 壓控振盪器 42
3.2.1 電感品質因數的提升 42
3.2.2 相位雜訊及功率上的最佳化 44
3.3 數位電路之設計 46
3.3.1 相位頻率偵測器 46
3.3.2 除頻器 47
3.3.3 和差調變器 48
3.3.4 位移暫存器 52
3.4 類比電路之設計 52
3.4.1 電荷幫浦 52
3.4.2 迴路濾波器 54
3.4.3 電容放大器 55
第四章 晶片模擬與佈局量測 60
4.1 頻率合成器各區塊模擬結果 60
4.2 壓控振盪器的佈局後模擬結果 67
4.3 頻率合成器的佈局後模擬結果 71
4.4 晶片佈局 74
4.5 電路量測 76
4.5.1 量測考量 76
4.5.2 量測結果與討論 80
第五章 結論 86
5.1 結論 86
5.2 未來展望 86
參考文獻 88
參考文獻 [1] FCC Rules and Regulations, “MedRadio Band Plan”, Part 95, Oct. 2009.
[2] Federal Communications Commission, Operations of Med Radio, Sept. 2009, http://wireless.fcc.gov/services/index.htm?job=operations&id=medical_implant
[3] T. Melly, A.-S. Porret, C. C. Enz, E. A. Vittoz, "An ultralow-power UHF transceiver integrated in a standard digital CMOS process: transmitter," IEEE Journal of Solid-State Circuits, vol. 36, pp. 467-472, Aug. 2001.
[4] M.H. Perrott, T.L. Tewksbury III, C.G. Sodini, "A 27-mW CMOS fractional-N synthe-sizer using digital compensation for 2.5-Mb/s GFSK modulation," IEEE Journal of Solid State Circuits, vol. 32, pp. 2048-2060, Dec. 1997.
[5] Y.-H. Liu, T.-H. Lin, "A Wideband PLL-Based G/FSK Transmitter in 0.18 um CMOS," IEEE Journal of Solid State Circuits, vol. 44, pp. 2452-2462, Sept. 2009.
[6] Roland E. Best, Phase-Locked Loops: Design, Simulation, and Applications. 5th ed., New York: McGraw-Hill, 2003.
[7] Fairchild Semiconductor Application Note 340, “HCMOS Crystal Oscillators,” May 1983.
[8] J. Rogers, C. Plett, F. Dai, Integrated circuit design for high-speed frequency synthesis. Boston : Artech House, Jan. 2006.
[9] B. Razavi, RF Mcroelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[10] A. Hajimiri, T. H. Lee, "Phase noise in CMOS differential LC oscillators," in IEEE Symposium on VLSI Circuits, Digest of Technical Papers, pp. 48-51, Jun. 1998.
[11] A. Hajimiri, T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[12] J. Rogers, C. Plett, F. Dai, Integrated circuit design for high-speed frequency synthesis. Boston: Artech House, Jan. 2006.
[13] B. Razavi, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid State Circuits, vol. 39, pp. 1415-1424, Sept. 2004.
[14] S. B. Sleiman, J. G. Atallah, S. Rodriguez, A. Rusu, M. Ismail, "Wide-division-range high-speed fully programmable frequency divider," in the Annual IEEE Northeast Workshop on Circuits and Systems, pp. 17-20, Jun. 2008.
[15] W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," in IEEE International Symposium on Circuits and Systems, vol.2, pp. 545-548, Jul. 1999.
[16] S. Pamarti, S. Delshadpour, "A Spur Elimination Technique for Phase Interpola-tion-Based Fractional-N PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 1639-1647, Jun. 2008.
[17] M. Zanuso, S. Levantino, C. Samori, A. Lacaita, "A 3MHz-BW 3.6GHz digital frac-tional-N PLL with sub-gate-delay TDC, phase-interpolation divider, and digital mis-match cancellation," in IEEE International Solid-State Circuits Conference Digest of Technology Papers, pp. 476-477, Feb. 2010.
[18] M. Gupta, B.-S. Song, "A 1.8-GHz Spur-Cancelled Fractional-N Frequency Synthesizer With LMS-Based DAC Gain Calibration," IEEE Journal of Solid State Circuits, vol. 41, pp. 2842-2851, Dec. 2006.
[19] B. Miller, R. J. Conley, "A multiple modulator fractional divider," IEEE Transactions on Instrumentation and Measurement, vol. 40, no. 3, pp. 578-583, Jun. 1991.
[20] W. R. Bennett, “Spectra of Quantized Signals,” Technical Journal of Bell System, vol.27, pp. 446-472, Jul. 1948.
[21] A. Hajimiri, T. H. Lee, The Design of Low Noise Oscillators. Boston: Kluwer Academic, 2003.
[22] R. J. Kier, R. R. Harrison, "Power minimization of a 433-MHz LC VCO for an implan-table neural recording system," in IEEE International Symposium on Circuits and Sys-tems, pp. 3225-3228, Sept. 2006.
[23] C.-C. Hsiao, C.-W. Kuo, C.-C. Ho, Y.-J. Chan, "Improved quality-factor of 0.18um CMOS active inductor by a feedback resistance design," IEEE Microwave and Wireless Components Letters, vol. 12, pp. 467-469, Dec. 2002.
[24] C.-H. Wu, C.-Y. Kuo, S.-I. Liu, "Selective metal parallel shunting inductor and its VCO application," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, pp. 1811-1818, Sept. 2005.
[25] A. Hajimiri, T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE Journal of Solid State Circuits, vol. 34, pp. 717-724, May 1999.
[26] R. Caverly, CMOS RFIC Design Principles. Norwood: Artech House, 2007.
[27] A. D. Berny, A. M. Niknejad, R. G. Meyer, "A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration," IEEE Journal of Solid State Circuits, vol. 40, pp. 909-917, Apr. 2005.
[28] T.-H. Lin, W. J. Kaiser, "A 900-MHz 2.5-mA CMOS frequency synthesizer with an au-tomatic SC tuning loop," IEEE Journal of Solid State Circuits, vol. 36, pp. 424-431, Mar. 2001.
[29] C.-S. A. Gong, M.-T. Shiue, K.-W. Yao, T.-Y. Chen, Y. Chang ; C.-H. Su, “A Truly Low-Cost High-Efficiency ASK Demodulator Based On Self-Sampling Scheme for Bioimplantable Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 1464-1477, Jul. 2008.
[30] J. Silva-Martinez, A. Vazquez-Gonzalez, "Impedance scalers for IC active filters," in IEEE International Symposium on Circuits and Systems, vol.1, pp. 151-154, Jun 1998.
[31] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, E. Sanchez-Sinencio, "A 60-dB dy-namic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 12, pp. 1391-1398, Dec. 2000.
[32] A. Tekin, M. R. Yuce, W. Liu, "Integrated VCO Design for MICS Transceivers," in IEEE Custom Integrated Circuits Conference, pp. 765-768, Sept. 2006.
[33] A. Italia, G. Palmisano, "A 1.2-mW CMOS frequency synthesizer with fully-integrated LC VCO for 400-MHz medical implantable transceivers," in IEEE Radio Frequency Integrated Circuits Symposium, pp. 333-336, Jun. 2009.
[34] K.-W. Li, L.L.K Leung, K.-N. Leung, "Low power injection locked oscillators for MICS standard," in IEEE Biomedical Circuits and Systems Conference, pp. 1-4, Nov. 2009.
[35] Y.-H. Liu, C.-L. Li, T.-H. Lin, "A 200-pJ/b MUX-Based RF Transmitter for Implantable Multichannel Neural Recording," IEEE Transactions on Microwave Theory and Tech-niques, vol. 57, pp. 2533-2541, Oct. 2009.
[36] J. Lee, K. Kim, J. Lee, T. Jang, S. Cho, "A 480-MHz to 1-GHz sub-ps clock generator with a fast and accurate automatic frequency calibration in 0.13um CMOS," in IEEE Asian Conference on Solid-State Circuits, pp. 67-70, Nov. 2007.
[37] 高曜煌, “射頻鎖相迴路IC設計,” 滄海書局, 2005.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2010-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明