博碩士論文 975201049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.144.18.252
姓名 林佩瑩(Pei-ying Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高崩潰電壓氮化鋁鎵/氮化鎵蕭基二極體之特性分析
(Analysis of AlGaN/GaN High Breakdown Voltage Schottky Diodes)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 文中,我們分別於高阻值氮化鋁及傳統氮化鎵兩種緩衝層上成長氮化鋁鎵/氮化鎵異質結構,並製作平面式蕭基二極體。元件量測結果顯示具高阻值氮化鋁緩衝層之元件可大幅提升其崩潰電壓,並同時維持低漏電流密度。所以,在此研究中我們深入探討不同緩衝層對蕭基二極體特性差異的因素並分析其漏電流機制。
在材料品質分析方面,從x-ray繞射量測GaN(002)繞射轉動曲線中,顯示出氮化鋁緩衝層可有效地降低磊晶材料的螺旋差排密度以減少漏電流路徑。而從蝕刻孔洞密度缺陷(Etching pits density, EPD)量測中,亦計算出氮化鋁緩衝層能有效降低上方磊晶結構之差排缺陷密度至3.2×107 cm-2,相較於具氮化鎵緩衝層之結構約降低了一個數量級左右。
在漏電流分析方面,我們分別針對緩衝層漏電流與氮化鋁鎵位障層漏電流兩個部分進行討論。其中氮化鋁緩衝層之阻值比氮化鎵緩衝層阻值大了六個數量級左右,顯示出氮化鋁緩衝層具有極低的漏電流特性;此外,我們利用變溫電流-電壓量測與變頻電容-電壓量測分析漏電流機制,發現在電壓為0 V~-6 V下的漏電流來源主要為氮化鋁鎵位障層,而在小於-6 V偏壓下的漏電流行為則由緩衝層品質主導,再以夫倫克爾-普爾發射(Frenkel–Poole emission, F-P emission)的漏電流模型計算出各試片氮化鋁鎵中的缺陷能階。
摘要(英) In this study, AlGaN / GaN HEMT structures on the high-resistance AlN buffer layer and the conventional GaN buffer layer were grown, respectively. The planar Schottky diodes were then fabricated on these structures. From the I-V measurement, the results indicate the device with high-resistance AlN buffer layer not only substantially promote the breakdown voltage but also keep the low leakage current density. Therefore, in this study we discussed in detail about the factors of SBDs characteristics on different buffer layers, and further analyzed the mechanism of leakage current.
In the analysis of material quality, according to the x-ray diffraction GaN (002) rocking curve shows that AlN buffer layer can effectively reduce the screw-type dislocation density of epitaxial materials, thus reducing the leakage current. Besides, the etching pits density (EPD) is also calculated that the dislocation density of the above epitaxial structure reduced to about 3.2x107 cm-2, which is about an order lower compared to the epitaxial material grown on the GaN buffer layer.
In the analysis of leakage current, the leakage current in the buffer layer and the AlGaN barrier layer are discussed, respectively. In the discussion, the resistance of the AlN buffer layer is about six orders greater than that of the GaN buffer layer, indicating that the AlN buffer layer has the characteristic of low-leakage current; in addition, temperature-dependent current-voltage (I-V) measurement and frequency-dependent capacitance-voltage (C-V) measurement are used to analyze the mechanism of leakage current. The results show that the primary source for the leakage current during the voltage of 0 V~ - 6 V is the AlGaN barrier layer while the leakage current is dominated by the quality of buffer layer below -6 V. To further discussion, defect energy levels in AlGaN barrier are quantified by the leakage current model of Frenkel-Poole emission (F-P emission).
關鍵字(中) ★ 漏電流
★ 蕭基二極體
關鍵字(英) ★ Schottky diode
★ leakage current
論文目次 論文摘要 iv
Abstract v
誌謝 vii
目錄 viii
第一章 緒論 1
1.1前言 1
1.2氮化鎵蕭基二極體元件的發展概況 4
1.3研究動機與目的 7
第二章 磊晶材料結構分析 10
2.1 前言 10
2.2磊晶材料特性分析 10
2.2.1 緩衝層X光繞射儀量測與分析 12
2.2.2 Hall量測與分析 13
2.2.3 C-V量測與分析 14
2.2.4貫穿式差排密度量測與分析 17
第三章 AlGaN/GaN蕭基二極體之漏電流分佈探討 19
3.1 前言 19
3.2 AlGaN/GaN蕭基二極體電流-電壓特性分析 19
3.2.1順向電流-電壓特性 19
3.2.2蕭基位障高度計算 22
3.2.3蕭基二極體之逆向偏壓特性 32
3.3蕭基二極體之漏電流分佈探討 35
3.3.1蕭基二極體之漏電流分佈探討 35
3.3.2 AlGaN位障層中之漏電流分佈探討 39
第四章 AlGaN/GaN蕭基二極體之漏電流機制探討 42
4.1 前言 42
4.2電容-電壓量測與分析 42
4.2.1變頻電容-電壓特性 42
4.2.2 電容-電壓遲滯曲線特性 48
4.3蕭基二極體之變溫逆向偏壓特性探討 52
第五章 結論 61
參考文獻 63
參考文獻 [1] Chow TP and Tyagi R., “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, Vol. 41, pp.1481-1483 (1998)
[2] B. J. Baliga, Modern power device, Wiley, New York, 1987.
[3] L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche, and J. Thuret, “Electrical Performance of GaN Schottky Rectifiers on Si Substrates”, Journal of The Electrochemical Society, 153 (7), G681-G684 (2006)
[4] http://www.cree.com/products/power_chip_sales.asp
[5] http://big51.chinataiwan.org/zt/jmkj/jishuluntan/jmqdyt/lsdy/200902/t20090225_835864
.htm
[6] Daisuke Nakamura1, “Ultrahigh-quality silicon carbide single crystals”, Nature, Vol.430,
pp.1010 (2004)
[7] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, X. A. Cao and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol.76, pp.1767 (2000)
[8] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, H. Cho and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol. 76, pp.3816, (2000)
[9] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee and S. J. Pearton, “Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage”, Appl. Phys. Lett., Vol. 78, pp.823 (2001)
[10] Z. Z. Bandic´, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers”, Appl. Phys. Lett., Vol.74, pp.1266 (1999)
[11] J. W. Johnson, A. P. Zhang, Wen-Ben Luo, Fan Ren, Stephen J. Pearton, S. S. Park, Y. J. Park, and Jen-Inn Chyi, “Breakdown Voltage and Reverse Recovery Characteristics of Free-Standing GaN Schottky Rectifiers”, IEEE Transactions on Electron Devices, Vol. 49, No. 1(2002)
[12] S. Yoshida, J. Li, N. Ikeda, and K. Hataya, “AlGaN/GaN field effect Schottky barrier diode (FESBD)”, phys. stat. sol. (c), Vol. 2, No. 7, pp.2602 (2005)
[13] K. Takatani, T. Nozawa, T. Oka, H. Kawamura and K. Sakuno, “AlGaN/GaN Schottky-ohmic combined anode field effect diode with fluoride-based plasma treatment”, IEEE Electronics Letters, Vol. 44, No. 4, (2008)
[14] A. P. Zhang, J. W. Johnson, B. Luo, and F. Ren, S. J. Pearton, S. S. Park and Y. J. Park, J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates”, Appl. Phys. Lett., Vol. 79, pp.1555 (2001)
[15] K. H. Baik, Y. Irokawa, Jihyun Kim, J. R. LaRoche, F. Ren, S. S. Park, Y. J. Park, and S. J. Pearton, “160-A bulk GaN Schottky diode array”, Appl. Phys. Lett., Vol. 83, pp.3192 (2003)
[16] Hidetoshi Ishida, “Unlimited High Breakdown Voltage by Natural Super Junction of Polarized Semiconductor”, IEEE Electron Device Letters, Vol. 29, No. 10 (2008)
[17] Shang-bui L. Tu., Chandler, Ariz., Bantval J. Baliga, Raleigh, N.C., “Schottky barrier rectifier including Schottky barrier regions of differing barrier heights”, U.S. Patent, 5262668 (1993)
[18] E. J. Miller, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors”, Journal of applied Physics ,Vol. 88, pp. 5951 (2000)
[19] Shreepad Karmalkar, “Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., Vol.82, pp.3976 (2007)
[20] D. Mahaveer Sathaiya, “Thermionic trap-assisted tunneling model and its application
to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors”,
Journal of applied Physics ,Vol. 99, pp. 093701 (2006)
[21] Shreepad Karmalkar, “On the Resolution of the Mechanism for Reverse Gate Leakage in
AlGaN/GaN HEMTs”, IEEE Electron Device Letters, Vol. 27 (2006)
[22] Junji Kotani, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures”, Appl. Phys. Lett., Vol.91, pp.093501 (2007)
[23] E. J. Miller, “Reduction of reverse-bias leakage current in Schottky diodes on GaN grown by molecular-beam epitaxy using surface modification with an atomic force microscope”, Journal of applied Physics, Vol. 91, pp. 9821 (2002)
[24] N. I. Kuznetsov, “Insulating GaN:Zn layers grown by hydride vapor phase epitaxy on SiC substrates”, Appl. Phys. Lett., Vol. 75, pp.3138 (1999)
[25] J. B. Webb, “Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy”, Appl. Phys. Lett., Vol. 75, pp.953 (1999)
[26] Sten Heikman, “Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 81, pp.439 (2002)
[27] H. Shi, “High-resistivity GaN homoepitaxial layer studied by Schottky diode structure”, Electronics Letters, Vol. 45 (2009)
[28] L. Lu,“Morphology of threading dislocations in high-resistivity GaN films observed by
transmission electron microscopy”, Journal of applied Physics ,Vol. 102, pp.033510, (2007)
[29] Hyeongnam Kim, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing”, Appl. Phys. Lett., Vol. 86, pp. 143505 (2005)
[30] N. Miura, “Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal”, Solid-State Electronics, vol. 48, pp. 689-695 (2004)
[31] Tamotsu Hashizume, “Surface Control Process of AlGaN for Suppression of Gate Leakage Currents in AlGaN/GaN Heterostructure Field Effect Transistors”, Japanese Journal of applied Physics, Vol. 45, pp. L111-L113 (2006)
[32] Takuma Nanjo, “Effects of a thin Al layer insertion between AlGaN and Schottky gate on the AlGaN/GaN high electron mobility transistor characteristics”, Appl. Phys. Lett., Vol. 88, pp. 043503 (2006)
[33] Sen Huang, “Study of the leakage current mechanism in Schottky contacts to Al0.25Ga0.75N/GaN heterostructures with AlN interlayers”, Semicond. Sci. Technol. 24 , (2009)
[34] M. Miyoshi, “Improved reverse blocking characteristics in AlGaN/GaN Schottky barrier
diodes based on AlN template”, Electronics Letters , Vol. 43 , No.17. (2007)
[35] S. Çörekçi, “Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer”, Journal of applied Physics ,Vol. 101,
pp.123502 (2007)
[36] Subramaniam Arulkumaran, “Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors”, Japanese Journal of applied Physics, Vol. 44, pp. 2953-2960 (2005)
[37] B. Heying, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., Vol. 68, 643 (1996)
[38] J. W. P. Hsu,“Direct imaging of reverse-bias leakage through pure screw dislocations in
GaN films grown by molecular beam epitaxy on GaN templates”, Appl. Phys. Lett., Vol.81, 79 (2002)
[39] Wataru Saito, “Effect of Buffer Layer Structure on Drain Leakage Current and Current
Collapse Phenomena in High-Voltage GaN-HEMTs”, IEEE Transactions on Electron Devices, Vol. 56, No. 7, pp. 1371 (2009)
[40] M. Sze, Physics of Semiconductor Devices, 3rd , pp.102.
[41] M. Sze, Physics of Semiconductor Devices, 3rd , p.103.
[42] Z. Tekeli, “The behavior of the I-V-T characteristics of inhomogeneous (Ni/Au)–
Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures”, Journal of Applied
Physics, vol. 102, pp. 054510 (2007)
[43] Yi Zhou, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams, Minseo Park, N. Mark Williams, and Andrew Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate” Solid-State Electronics, Vol. 50, pp. 1744–1747 (2006)
[44] Jian H. Zhao, Petre Alexandrov, and X. Li, “Demonstration of the First 10-kV 4H-SiC Schottky Barrier Diodes”, IEEE Electron Device Letters, Vol. 24, No. 6, pp. 402-404 (2003)
[45] Johji Nishio, Chiharu Ota, Tetsuo Hatakeyama, Takashi Shinohe, Kazutoshi Kojima, Shin-Ichi Nishizawa, and Hiromichi Ohashi, “Ultralow-Loss SiC Floating Junction Schottky Barrier Diodes (Super-SBDs)”, IEEE Transactions on Electron Devices, Vol. 55, No. 8, pp. 1954-1960 (2008)
[46] Jen-Inn Chyi, C.-M. Lee, C.-C. Chuo, X.A. Cao, G.T. Dang, A.P. Zhang, F. Ren, S.J. Pearton, S.N.G. Chu, R.G. Wilson, “Temperature Dependence of GaN High Breakdown Voltage Diode Rectifiers”, Solid-State Electronics, Vol. 44, pp. 613-617 (2000)
[47] Hidetoshi Ishida, “GaN-based Natural Super Junction Diodes with Multi-channel Structures” IEDM 2008.
[48] Seikoh Yoshida, Nariaki Ikeda, Jiang Li, Takahiro Wada, and Hironari Takehara, “Normally-off operation power AlGaN/GaN HFET”, Proc. ISPSD’04, pp.369-371 (2004)
[49] Wanjun Chen, King-Yuen Wong, Wei Huang, and Kevin J. Chen, ” High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors” Appl. Phys. Lett., Vol. 92, pp.253501 (2008)
[50] Junji Kotani, “Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures”, Appl. Phys. Lett. 91, pp.093501 (2007)
[51] S. K. Zhang, “Properties of interface states at Ta2O5 /n-Si interfaces”, Journal of applied Physics, Vol. 84, pp. 335 (1998)
[52] H. Zhang, “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy”, Journal of applied Physics, Vol. 99, pp. 023703 (2006)
[53] Shreepad Karmalkar, “Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., Vol. 82, pp.3976 (2003)
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2010-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明