國立中央大學100學年度碩士班考試入學試題卷

所別:光電科學與工程學系碩士班 不分組(一般生) 科目:電子學 共 2 頁 第 页 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作答

- 1. For the BJT amplifier shown in Figure 1, answer the following questions. The parameters are $v_b = 5$ V, the current through R_2 is 1 mA, $|V_A| = 200$ V, $V_T = 25$ mV, and the base current can be neglected.
 - (a) Find the values of R_1 and R_2 . (6%)
 - (b) Find the bias current of the transistor $I_C(V_{BE} = 0.7 \text{ V})$. (4%)
 - (c) If $R_3 = 4 \text{ k}\Omega$, find R_m and R_o . (10%)
 - (d) Determine the small signal gain $A_v = v_o/v_s$. (5%)

Fig. 1

- 2. For the active first-order filter shown in Figure 2, answer the following questions:
 - (a) Determine the transfer function H(s) = Vo/Vs, where $s = j\omega$. (5%)
 - (b) What condition is required for the circuit to operate as a highpass filter? (5%). Draw the magnitude Bode plot and find the 3-dB frequency. (5%)
 - (c) What condition is required for the circuit to operate as a lowpass filter? (5%) Draw the magnitude Bode plot and find the 3-dB frequency. (5%)

Fig. 2

注:背面有試題

國立中央大學100學年度碩士班考試入學試題卷

共 2 頁 第 2 頁 所別:光電科學與工程學系碩士班 不分組(一般生) 本科考試可使用計算器,廠牌、功能不拘

- 3. Consider the circuit shown in Figure 3. The forward-bias cut-in voltage of the diode is V_{TH} and the forward-bias resistance is r_{f}
- (5%)(a) Determine the minimal electric current in LED.
- (5%)(b) Determine the maximal electric current in LED.

Fig. 4:

- $\sum R_{C2}$ R_{C2} $I_{Q1} = 0.2 \text{ mA}$ = -10 V= -10 V
- 4. Consider the circuit shown in Fig. 4. The parameters are $\beta = 180$ and $V_A = \infty$. $v_{01} = v_{02} = 2 \text{ V} \text{ and } v_{04} = 6 \text{ V} \text{ when } v_1 = v_2 = 0 \text{ V}.$
- (5%)(a) Determine the value of R_{CI} .
- (5%)(b) Determine the value of R_{C2} .
- (5%)(c) Determine the differential-mode voltage gain $A_{dl} = (v_{o1} - v_{o2}) / (v_l - v_2)$.
- (5%)(d) Determine the differential-mode voltage gain $A_d = v_{04}/(v_1 - v_2)$.
 - 5. Consider the phase-shift oscillator in Figure 5.
- (a) Derive the expression for the frequency of oscillation. (5%)
- (5%)(b) Determine the condition for oscillation.
- (5%)(c) For R=20k Ω , find C and R_F that will produce sustained oscillations at $f_0=22$ kHz.
- (5%)(d) Sketch the Bode phase plot.

