博碩士論文 973202037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.117.94.25
姓名 蔡晨暉(Chen-Hui Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型試驗模擬沉箱式碼頭之受震行為
(Centrifuge modeling on seismic responses of caisson type quay wall during earthquakes)
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 沉箱式碼頭於受震後,常因背填土壤液化以及自身慣性力,使沉箱朝海側方向產生側向位移,導致碼頭後方地盤的沉陷與滑動、港埠設施的損壞以及營運作業長時間的停擺,造成極大的經濟損失。本研究以離心模型試驗模擬沉箱式碼頭受震反應,探討沉箱的兩種振動模式,水平位移模式與旋轉模式,與周圍土壤之間的箱-土動態互制行為。
本研究以台中港3號沉箱碼頭原型尺寸的40%,設計八十分之一縮尺的沉箱碼頭模型,於80g離心力場下進行試驗。試體以石英矽砂霣降至本研究設計之固壁式蜂巢試驗箱而成,試體內部不同位置安裝加速度計、孔隙水壓計、土壓計,分別量測各項歷時。試體表面安裝線性差動變壓器(LVDT),量測沉箱垂直、側向位移與後方背填土的地表沉陷歷時。另外,試體內部會擺設水平色砂層與土層變位計,觀察受振後的地盤變形。
研究結果顯示:(1)沉箱的水平位移模式主要影響沉箱後方淺層土壤的孔隙水壓變化,當沉箱愈朝海側移動則孔隙水壓激發量愈小;(2)沉箱的旋轉模式會影響沉箱下方基礎層土壤的孔隙水壓力變化,其正負交替的超額孔隙水壓力會使該區呈現抽吸的效應,造成大量背填土朝海側移動,引致沉箱後方顯著的沉陷量;(3)兩種振動模式的相位關係會影響旋轉中心的變化,兩者為反相關係時,沉箱朝陸側位移時會朝海側旋轉,並使旋轉中心朝陸側方向發展;(4)藉由Wolf(1988)所提出公式可預估沉箱運動模式的主頻值,其計算結果與試驗數據經由FFT之後的值相近。
摘要(英) The backfill liquefaction behind the caisson type quay wall and the inertial force of the wall may cause the horizontal seaward displacement during earthquakes. The lateral deformations and large surface settlements on the service area caused the severe damage of port facilities and led to large economical lost. A series of centrifuge model tests was conducted to simulate the dynamic response of caisson type quay wall, focusing on the investigation of the characteristic of vibration modes of quay wall and the dynamic soil-wall interaction. There are two types of vibration modes, i.e., the translation mode and the rotation mode.
In this research, a centrifugal scale-down model was specifically designed and tested at 80 g. The 40% dimension of No.3 quay wall in Taichung harbor was treated as the prototype. The test sand bed was prepared by pluviating quartz sand into the new designed rigid box. Several accelerometers, pore water pressure transducers, and earth pressure cells were instrumented in the quay wall model and backfill. LVDTs were also mounted at the surface of the backfill and on the quay wall, in order to record the displacement histories of the surface settlement and of the quay wall during shaking. Besides, the horizontal colored sand and ground displacement meter were put inside the test model to observe the ground deformation after shaking.
The test results draw the following conclusions: (a)The translation mode dominantly affects the variation of pore water pressure in the shallow layer of soil behind the quay wall, and the excess pore water pressure decreased as the increase of seaward movement of quay wall. (b)The rotation mode dominated the fluctuation of pore water pressure readings beneath the quay wall foundation, and caused drainage from backfill into sea region. Because of the positive and negative pore water pressures alternatively change results in the pumping and suction effects which makes the large surface settlement happened in backfill area.(c) The phase difference between those two vibration modes influences the location of rotation center of quay wall. Quay wall is moving toward land direction and rotating toward sea when it shows out of phase relation between translation mode and rotation mode. Meanwhile, the position of rotation center will be changed toward backfill.(d)The predominant frequency of two vibration modes can be predicted by the formula which was proposed by Wolf (1998), and the calculated values consist with the experimental results.
關鍵字(中) ★ 沉箱式碼頭
★ 沉箱振動模式
★ 固壁式蜂巢試驗箱
★ 超額孔隙水壓
★ 主頻
★ 沉箱旋轉中心
關鍵字(英) ★ rotation center of quay wall
★ excess pore pressure
★ vibration modes of quay wall
★ rigid box
★ predominant frequency
★ caisson type quay wall
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xiii
第一章 緒論1
1-1 引言1
1-2 研究目的與動機1
1-3 研究方法2
1-4 論文內容2
第二章 文獻回顧3
2-1 前言3
2-2 土壤液化及其引致的破壞行為3
2-3 沉箱式碼頭系統受震破壞案例6
2-3-1 現地案例之土壤工程性質與碼頭結構6
2-3-2 沉箱式碼頭的特性與破壞7
2-4 邊坡受震後之動態反應9
2-5 沉箱式碼頭受震反應之相關研究11
2-6 離心模型原理13
2-6-1 離心模型之基本相似律14
2-6-2 離心模型試驗模型模擬觀念17
第三章 試驗設備、試驗土樣及試驗方法37
3-1 試驗儀器與相關設備37
3-1-1 中大地工離心機37
3-1-2 中大離心振動台38
3-1-3 固壁式蜂巢試驗箱38
3-1-4 沉箱式碼頭離心縮尺模型39
3-1-5 移動式霣降儀39
3-1-6 相關量測工具40
3-2 試驗土樣41
3-3 沉箱式碼頭離心模型試體製作流程42
3-3-1 試驗準備42
3-3-2 試體霣降與安置感測器42
3-3-3 放置土層變位計43
3-3-4 試體飽和與抽真空43
3-3-5 架設LVDT43
3-4 試驗方式43
第四章 試驗數據處理與分析64
4-1 前言64
4-2 試驗說明64
4-3 土層動態反應分析66
4-3-1 土層的初始平均剪力波速66
4-3-2 土層於s2事件的超額孔隙水壓比歷時67
4-3-3 土層於s2事件的加速度歷時69
4-3-4 背填土地表於s2事件的沉陷歷時70
4-3-5 土層動態反應分析小結71
4-4 沉箱式碼頭的箱-土動態互制行為分析72
4-4-1 沉箱動態物理分量計算73
4-4-2 沉箱動態反應分析75
4-4-2-1 沉箱於s2事件的垂直沉陷歷時、側向位移歷時與旋轉角歷時75
4-4-2-2 沉箱於s2事件的加速度歷時77
4-4-2-3 沉箱於s2事件的超額孔隙水壓比歷時78
4-4-2-4 沉箱於s2事件的土壓力比歷時79
4-4-2-5 沉箱於s2事件的旋轉中心歷時80
4-4-2-6 沉箱系統變位情形80
4-4-2-7 沉箱動態反應分析小結81
4-4-3 沉箱運動模式的相位分析81
4-4-3-1 沉箱運動模式的相位82
4-4-3-2 沉箱運動模式相位與超額孔隙水壓比的關係82
4-4-3-3 沉箱運動模式與背填土的超額孔隙水壓比的相位關係83
4-4-3-4 沉箱運動模式與基礎層土壤的超額孔隙水壓比相位關係 85
4-4-3-5 沉箱運動模式相位與周圍土壤超額孔隙水壓比的關係小結
86
4-5 沉箱式碼頭系統於試驗期間的頻率特性86
4-5-1 沉箱式碼頭系統受振的主頻計算87
4-5-2 以FFT探討沉箱式碼頭的頻率特性92
4-5-3 以轉換函數探討沉箱式碼頭的頻率特性93
4-5-4 沉箱式碼頭系統於試驗期間的頻率特性小結94
第五章 結論與建議147
5-1 結論147
5-2 建議148
參考文獻 149
附錄一 固壁式蜂巢試驗箱設計152
附錄二 沉箱離心縮尺模型設計166
附錄三 訊號處理173
參考文獻 參考文獻
1.台中港務局,「九二一地震台中港北碼頭區一至四A碼頭港埠設施災損勘查及原因研究分析報告」,四川土木大地技師事務所(1999)。
2.李崇正、吳秉儒、熊大綱,「以離心模型的震動台試驗探討沉箱碼頭的側向擴展」,地工技術,(2000)。
3.李崇正、陳慧慈,「集集大地震中港穀類碼頭側移及沉陷初勘」,港灣報導季刊,No. 50,第1-10頁,(1999)。
4.林國忠,「反覆荷重作用下砂性土壤之變形行為研究」,國立成功大學土木工程研究所碩士論文,(1997)。
5.紀雲耀,「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,國立成功大學土木工程研究所博士論文,(1997)。
6.賴志忠,「沉箱碼頭受震反應及側向位移分析」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
7.郭玉潔,「探討積層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
8.鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,國立中央大學土木工程學系,中壢(2010)。
9.王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,國立中央大學土木工程學系,中壢(2010)。
10.簡連貴、賴聖耀、林敏清,「921集集大地震對台中港區港灣設施災損調查與評估」,中國土木水利工程學刊,第二十六卷,第三期,82-95頁,(1999)。
11.蘇吉立、李延恭,「921集集大地震後台中港北碼頭災象調查分析」,地工技術雜誌,第七十七期,65-76頁,(2000)。
12.Tsuyoshi Honda, Tomohiro Tanaka, Ikuo Towhata, and Satoshi Tamate, “Mitigation Techniques of Damages of Quay Wall due to Seismic Liquefaction”, Proceedings of the Fifth Workshop on Safety and Stability of Infrastructures against Environmental Impacts, De La Salle University, Manilla, Philippin , pp. 39–46, December 5–6,( 2005).
13.Zhaohui Yang, Ahmed Elgamal, Tarek Abdoun, and Chung-Jung Lee, “A numerical study of lateral spreading behind a caisson-type quay wall", 4rd International Conference on Recent Advances in Geotechnical Earthquake Engineering in Soil Dynamic and Symposium, America, ( 2001).
14.Kohama, E., Miura, M., Yoshida, N.,Ohtsuka, N.,Kurita, S.,“Instability of gravity type wall induced by liquefaction of backfill during earthquake,” Soil and Foundations, Vol.38, No.4, pp.71-83 (1998).
15.Kohama, E., Miura, M., Matsuda, S., Nagayama, S., Misaki, S., “Experimental studies on the seismic response of a gravity type caisson wall,” Centrifuge 98, pp.333-339 (1998).
16.C.J. Lee, “Centrifuge Modeling of Behavior of Caisson-Type Quay Walls during Earthquake”, Soil Dynamics and Earthquake Engineering 25, pp. 117-131 (2005).
17.C.J. Lee, T. Abdoun., R. Dobry., B. Wu., “Centrifuge Modeling of lateral spreading behind a Caisson-Type Quay Walls during Earthquake”, 7th U.S.- Japan Workshop on Earthquake Resistant Design of lifeline Facilities and Countermeasures Against Liquefaction, August 15-17,Seattle, Washington, (1999).
18.E.J. Malvick, B.L. Kutter, R.W. Boulanger, H.P. Feigenbaum, “Post-shaking Failure of Sand Slope in Centrifuge test”, 11th International Conference on Soil Dynamics and Earthquake Engineering, and 3rd International Conference on Earthquake Geotechnical Engineering, Stallion Press, Vol. 2, pp. 447-455 (2004).
19.Ross W. Boulanger, “Void redistribution in sand following earthquake loading”, Physics and Mechanics of Soil Liquefaction, Lade & Yamamuro, eds. Balkema,Rotterdam, pp.261–268, (1999).
20.Zeghal, M., Elagmal, A.W., Zeng, x., Arulmoli, K. “Mechanism of Liquefaction Response in Sand-Silt Dynamic Centrifuge Tests”, Soil Dynamics and Earthquake Engineering 18, pp.71-85 (1999).
21.Zeng, X., “Seismic response of gravity quay walls. I:Centrifuge modeling,” ASCE, Journal of Geotechnical and Geoenviromental Engineering, Vol. 124, No.5, pp.406-417, (1998).
22.Poulos, H.G., “Elastic Solutions for Soil and Rock Mechanics,” New York, (1973).
23.Shames, I.H., “Engineering Mechanics Dynamics, Prentice-Hall,” Taiwan, (1978).
24.Wolf, J.P., “Soil-Structure-Interaction Analysis in Time Domain,” Prentice-Hall, America, (1988).
指導教授 李崇正(Chung-Jung Lee) 審核日期 2011-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明