博碩士論文 953204014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:54.210.83.20
姓名 林詠勛(YungHsun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬掺雜對導電氧化物載子濃度(氧空位及取代)影響研究及其分離模型建立
(Construction of the Carrier Concentration(Oxygen-Vacancy and Cation-Substitution) Separation Model & Metal Doping Effect on the Carrier Concentration in Conductive Oxides)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文研究的目標在於提出一分離模型可個別計算由氧缺陷及陽離子取代所產生的電子濃度,並藉由觀察熱處理環境參數(退火溫度及氧氣分壓)對於不同金屬掺雜對氧化銦薄膜中的氧缺陷濃度及陽離子取代濃度的影響,提出(1)金屬掺雜氧化物薄膜的取代機制及(2)陽離子取代如何影響氧缺陷濃度。第三章中,我們提出氧缺陷濃度及陽離子取代濃度的分離計算方法。分離模型是藉由量測不同氧分壓環境下熱處理的薄膜載子濃度,進而計算出薄膜中氧缺陷濃度及陽離子取代濃度。在第四章中,我們分析氧分壓及熱處理溫度對於氧缺陷濃度及陽離子取代濃度的影響發現,掺雜金屬的陰電性及電子外層軌域結構為影響不同金屬掺雜氧化薄膜中的陽離子取代濃度及氧缺陷濃度的主因。薄膜經不同氧分壓熱處理環境時,因金屬陰電性的大小不同,會造成陽離子取代濃度的隨氧分壓的變化不一樣。而電子外層軌域結構則會造成氧缺陷生成能因電子混成軌域能階的改變而有變化。第五章中,我們發現as-deposited ITO/Al結構經熱處理後有吸收特定波長光(400 nm- 600 nm)的現象。其原因應為Al原子擴散進ITO薄膜內間隙位置,於電子能帶中defect level,造成特定光線行經ITO薄膜時,因光線能量足以使電子躍遷而被吸收。但薄膜經預先熱處理後再鍍上Al反射層,可作為良好的Al擴散阻障層。另外,我們發現氧化銦錫薄膜對於近紫外光(380 nm)穿透率在經掺雜第三元金屬鈦之後可提升22%。將鈦掺雜氧化銦薄膜作為近紫外光發光二極體電流散佈層後可提升其發光效率達52.1 %。
摘要(英) In this thesis, we would propose a method which can decouple and estimate the oxygen-vacancy concentration and the cation-substitution concentration in an extrinsic metal oxide thin film separately. Also, we further propose how the properties of the dopant affect the cation-substitution reaction and the oxygen-vacancy concentration by observing the annealing ambient effects. In chapter 3, we propose the method which could estimate the oxygen-vacancy concentration and the cation-substitution concentration by measuring the carrier concentration of the thin film, which is annealed in different oxygen partial pressure. In chapter 4, we would discuss that how the difference of the electronegativity and the electron configuration would govern the cation-substitution reaction and the oxygen-vacancy formation reaction n. And how do oxygen-partial pressure and annealing temperature affect on the oxygen-vacancy concentration and the cation-substitution concentration. We found that the electronegativity would affect the cation-substitution concentration when the thin films were annealed at different oxygen pressure. And the electron configuration would affect the band diagram and affect the oxygen-vacancy formation energy. Besides the basic electrical properties, we also study the optical properties of ITO based thin films.
In chapter 5, we found that the as-deposited ITO/Al structure would absorb particular light (400 nm- 600 nm) after thermal treatment. It is because the Al diffusion in ITO would locate at the interstitial site and serve as a defect level. Yet, we found that the pre-annealed ITO thin film is a good diffusion barrier layer which can retard the Al diffusion. On the other hand, by measuring the transmittance of the M:ITO thin films, we found that the transmittance of the extrinsic metal oxide in the near-UV region could be enhanced by doping the ternary metal. The transmittance of ITO thin film at near-UV region (380 nm) could be enhanced 22 % after doping Ti. Thus, after applying the Ti:ITO thin film on near-UV LED as the current spreading layer, the light output power of the near-UV LED is enhanced 52.1 %.
關鍵字(中) ★ 發光二極體
★ 透明導電薄膜
★ 載子濃度
★ 陽離子取代
★ 氧空位
關鍵字(英) ★ Oxygen-vacancy
★ Cation-substitution
★ transparent conductive layer
★ carrier concentration
★ light-emitting diode
論文目次 Chinese abstract……………………………………………………..…....................…I
Abstract………………………………………………………………………………..II
List of Figures……………………………………………………………..……..….VII
List of Tables…………………………………………………………………….…....X
Chapter 1 Introduction
1.1 Transparent conductive oxide…………………………………………..……….…1
1.2 Conduction mechanisms of transparent conductive oxide
1.2.1 Oxygen-vacancy formation …………………………………………….......3
1.2.2 Cation-substitution reaction………………………………………….……..5
1.3 Present status of TCO development ………………………………………….…...8
Chapter 2 Motivation………………………………………………………………12
Chapter 3 Calculation method for decoupling and estimating oxygen-vacancy concentration and cation-substitution concentration in the extrinsic metal oxide
3.1 Derivation of carrier concentration separation model……………………….….14
3.2 Experiments…………………………………………………………………..…..16
3.3 Results and discussions
3.3.1 Oxygen-vacancy formation energy of intrinsic In2O3 thin films……….....17
3.3.2 Oxygen-vacancy concentration and cation-substitution concentration of M:In2O3 thin films…………………………………………………..…….18
3.3.3 Oxygen-vacancy concentration result calculated by positron annihilation lifetime spectroscopy……………………….......................................……21
3.4 Summary………………………………………………………………………....25
Chapter 4 Metal doping effects on the indium oxide thin film
4.1 Experiment…………………………………………………………………….…26
4.2 Calculation model for estimating the oxygen-vacancy concentration in different phases in M:In2O3…………………………………………………………….....26
4.3 Results and discussions
4.3.1 Carrier concentration results………………………………………….…...28
4.3.2 The effect of electronegativity on nS………………………………..……..31
4.3.3 The effect of hybridized orbital of MO2 on the oxygen-vacancy formation energy in phase S…………………………………………..……………...34
4.3.4 The dopant effects on nV,S and nS result in the nV variation in M:In2O4...…...40
4.4 Ternary doping effect on ITO thin films
4.4.1 Carrier concentration results…………………….………………………...42
4.4.2 Ternary dopant effect on nS and nV………………………………………..43
4.5 Summary………………………………………………………………….……...46
Chapter 5 TCL applications: diffusion barrier and current spreading layer
5.1 Apply ITO thin film as the Al reflector diffusion barrier………………………48
5.1.1 Introduction…………………..…………………………..…………….….48
5.1.2 Experiments…………………………………..…………..…………….….49
5.1.3 Results and discussions…………………………..…………..……….…...50
5.1.4 Summary……………………………..……………..………………….….58
5.2 Light output enhancement of near UV-LED by using Ti-doped ITO transparent conducting layer…………………………………………………………………58
5.2.1 Introduction………………..…………………………………..…….…….58
5.2.2 Experiments…………………………..………………………..……….….59
5.2.3 Results and discussion
A. Electrical and optical properties of ITO and Ti:ITO thin films…...……..…59
B. The light output power enhancement by using Ti:ITO thin film as TCL on UV-LED…………………………………………………………...….…...63
5.2.4 Summary……………………………………………….………….............67
Chapter 6 Conclusion………………………………………………...……………..69
Reference……………………………………………….……………..……………..72
參考文獻 Chapter 1
[1] K. Badeker, Ann. Phys. (Leipzig) 22 (1907) 749
[2] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B106, 69–72, (2004)
[3] Y. H. Lin, Y. S. Liu, and C. Y. Liu, IEEE Photonics Technology Letters, 22 (19) 1443-1445 (2010)
[4] S. Y. Kim and J. L. Lee, Electrochem. Solid-State Lett., 7 (5) G102-G104 (2004)
[5] C. H. Cheng and J. M. Ting, Thin Solid Films, 516, 203-207 (2007)
[6] C. H. Kuo, S. J. Chang, Y. K. Su, R.W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo, and J. M. Tsai, Materials Science and Engineering B 106, 69-72 (2004)
[7] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo, and S. C. Chen, Solid-State Electronics 47, 849-853 (2003)
[8] T. H. Chen, T. J. Wu, J. Y. Chen, and Y. Liou, J. Appl. Phys., 99, 114515 (2006)
[9] J. D. Hwang, C. C. Lin. And W. L. Chen, J. Appl. Phys., 100, 044908 (2006)
[10] N. Kikuchi, E. Kusano, E. Kishio, and A. Kinbara, Vacuum, 66, 365-371 (2002)
[11] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, IEEE Photonics Technology Letters, 14 (12) 1668-1670(2002)
[12] J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, IEEE Photonics Technology Letters, 16 (6) 1450-1452 (2004)
[13] S. J. Kim, IEEE Photonics Technology Letters, 17 (8) 1617-1619 (2005)
[14] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett., 79 (18), 2925-2927 (2001)
[15] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, Appl. Phys. Lett., 86, 221101 (2005)
[16] J. K. Kim, T. G., E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, Appl. Phys. Lett., 88, 013501 (2006)
[17] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, Appl. Phys. Lett., 91, 013504 (2007)
[18] K. Y. Lee, C. Becker, M. Muske, F. Ruske, S. Gall, and B. Rech, Appl. Phys. Lett., 91, 241911 (2007)
[19] Y. M. Chiang, D. P. Birnie, III, W. D. Kingery, Physical ceramics: Principles for Ceramic Science and Engineering
[20] T. Minami, H. Sonoara, T. Kakumu, and S. Takata, Thin Solid Films 270, 37-42 (1995)
[21] N. Al-Dahoudi and M. A. Aegerter, Thin Solid Films, 502, 193-197 (2006)
[22] G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, Thin Solid Films, 515, 8562-8566 (2007)
[23] T. Minami and T. Miyata, Thin Solid Films, 517, 1474–1477 (2008)
[24] R. G. Gordan, MRS Bulletin/August , 52-56 (2000)
[25] The U.S. Geological Survey, Mineral Commodity Profile- Indium (2006)
[26] T. Minami, Semicond. Sci. Technol. 20, S35–S44 (2005)
Chapter 3
[1] R. Krause-Rehberg and H. S. Leipner, Positron annihilation in Semiconductors: Defect Studies (1998)
[2] A. Janotti et al., Phys. Rev. B 81, 085212 (2010)
[3] H. E. Schaefer, Phys. Stat. Sol A, 102, 47 (1987)
[4] A. Uedono et al., J. Appl. Phys., 92 (5) 2697-2702 (2002)
[5] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys., 83 (5) 2631-2645 (1998)
[6] M. J. Puska, C. Corbel, and R. M. Nieminen, Phys. Rev. B 41, 9980–9993 (1990)
[7] R. W. Siegel, Ann. Rev. Mater. Sci., 10, 393-425 (1980)
[8] S. Mantl, W. Triftshauser, Phys. Rev. B 17, 1645–1652 (1978)
[9] W. Brandt and R. Paulin, Phys. Rev. B 5, 2430-2435 (1972)
Chapter 4
[1] J. F. Baumard and E. Tani, J. Chem. Phys. 67 (3), 857 (1977)
[2] T. W. Chiu, K. Tonooka, and N. Kikuchi, Thin Solid Films, 518, 7441-7444 (2010)
[3] J. P. Lin, and J. M. Wu, Appl. Phys. Lett., 92, 134103 (2008)
[4] G. Goncalves et al., Thin Solid Films, 515, 8562-8566 (2007)
[5] J. Lee, Thin Solid Films, 516, 1386-1390 (2008)
[6] A. Y. Oral, Z. B. Bahsi, an dM. H. Aslan, Appl. Surf. Sci., 253, 4593-4598 (2007)
[7] Y. C. Lin, J. H. Jiang, and W. T. Yen, Appl. Surf. Sci., 255, 3629-3634 (2009)
[8] K. Tominaga et al., Vacuum, 66, 511-515 (2002)
[9] John C. C. Fan and John B. Goodenough, J. Appl. Phys., 48 (8), 3524-3530 (1997)
[10] Y. M. Chiang, D. P. Birnie, W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering
[11] C. Korber et al., Physical Review B 81, 165207 (2010)
[12] G. Rayner-Canham and T. Overton, Descriptive Inorganic Chemistry
[13] J. Robertson, J. Phys. C: Solid State Phys. 12, 4767 (1979)
[14] L. Soriano et al., Solid state communication, 93 (8), 659-665 (1995)
[15] K. Yang et al., Physical Review B 81, 033202 (2010)
[16] L. M. Tang et al., J. Appl. Phys., 107, 083704-1-083704-5 (2010)
[17] R. Ramprasad et al., Microelectron. Eng., 69, 190-194 (2003)
[18] S. J. Clark and J. Robertson, Appl. Phys. Lett., 94, 022902-1-022902-3 (2009)
Chapter 5
[1] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. TOP. Quantum Electron. 8, 310 (2002).
[2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, and S. Nakamura, Appl. Phys. Lett., 84, 855 (2004).
[3] C. L. Lin, S. J. Wang, and C. Y. Liu, Electrochem. Solid-State Lett., 8, G265-G267 (2005).
[4] H. W. Jang and J. L. Lee, Appl. Phys. Lett., 85, 5920 (2004).
[5] S. Y. Kim, J. L. Lee, Electrochem. Solid-State Lett., 7, G102-G104 (2004).
[6] H. Kim, A. Piqu’e, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, Thin Solid Films, 377-378 (2000).
[7] Hiroshi Morikawa, Hiroki Kuratz and Miya Fujita, J. Electron Microsc., 49(1), 67-72 (2000).
[8] E. Bertran, C. Corbella, M. Vives, A. Pinyol, C. Person, I. Porqueras, Solid State Ion., 265, 139-148, (2003).
[9] C. M. Liu, W. L. Liu, W. J. Chen, S. H. Hsieh, T. K. Tsai, and L. C. Yang, J. Electrochem. Soc., 152, G234-G239 (2005).
[10] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu and G. C. Chi, IEEE Photonic Tech L, 18, No. 1 (2006)
[11] K. H. Kim, Z. Y. Fan, M. Khizar, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 85, 4777 (2004)
[12] C. H. Kuo, S. J. Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B106, 69–72, (2004)
[13] S. H. Su, C. C. Hu, M. Yokoyama, R. S. Shieh, and S. M. Chen, J. Electrochem. Soc., 154 (5) J155-J158 (2007)
[14] S. Y. Kim and J. L. Lee, Electrochem. Solid State Lett., 7, G102-G104 (2004).
[15] T. A. Gessert, Y. Yoshida, C. C. Fesenmaier, and T. J. Coutts, J. Appl. Phys., 105, 083547 (2009)
[16] J. O. Song, J. S. Kwak, Y. Park, T. Y. Seong, Appl. Phys. Lett., 86, 213505 (2005)
[17] J. C. Kim, C. H. Shin, C. W. Jeong, Y. J. Kwon, J. H. Park and D. Kim, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 268(2), 131-134 (2010)
[18] S. Chandramohan, A. Kanjilal, T. Strache, J. K. Tripathi, S. N. Sarangi, R. Sathyamoorthy and T. Som, Appl. Surf. Sci., 256, 465-468 (2009)
[19] S. Chhajed, Y. Xi, Y.-L. Li, Th. Gessmann, and E. F. Schubert, J. Apply. Phys., 97, 054506 (2005)
[20] Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, Appl. Phys. Lett., 86, 031907 (2005)
指導教授 劉正毓(Chengyi Liu) 審核日期 2011-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明