博碩士論文 973203022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.90.205.166
姓名 黃冠霖(Guan-lin Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具太陽齒輪浮動之行星齒輪機構負載分析
(Analysis of Load Sharing in Planetary Gear Sets with a Floating Sun Gear)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 行星齒輪傳動機構藉由多個行星齒輪分別承受分配負載方式,得以提高傳動功率。然而由於加工、組裝誤差與機構構件等變形因素,造成每個行星齒輪會承受大小不同的負載,因此對於多個行星齒輪的輪系皆會有均載設計,其中又以太陽齒輪浮動設計最為常見。目前對於行星齒輪機構負載分配的理論研究,多以簡化的齒輪數學模型分析為主,本論文之研究目的即在建立一套以漸開線齒輪幾何為基礎的行星齒輪系負載分析模式,以探討具太陽齒輪浮動之行星齒輪機構在組裝與加工誤差下,行星齒輪的可組裝性、太陽齒輪中心可動範圍以及行星齒輪間的負載分配等問題。
在研究中首先利用二維漸開線齒輪幾何,建立行星齒輪系嚙合關係,在考慮各種設計參數與誤差下,透過行星齒輪組裝流程探討行星齒輪系的可組裝性,並以「單一齒輪兩齒對接觸」與「兩齒輪單齒對接觸」兩種不同的浮動太陽齒輪拘束形式,探討太陽齒輪中心可動範圍。接著分別利用解析法與數值方法解探討行星齒輪機構負載分配情形。同時本研究亦針對於太陽齒輪固定狀況下,以各齒輪對接觸齒數變化造成嚙合剛性的改變來解釋行星齒輪系在不同嚙合位置的負載分配會出現跳動的情形。本研究同時以物件化程式輔助分析,以提高計算速度。
浮動太陽齒輪中心可動範圍的分析結果顯示,太陽齒輪在三至五個行星齒輪之輪系的中心可動範圍邊界呈現近似多邊形,其邊界數目為行星齒輪個數兩倍,而且太陽齒輪在可動範圍邊界上受拘束形式,以兩齒輪單一齒對拘束為主。此外在不同齒厚配合公差下的可動範圍會隨著齒輪對背隙增加而等比例放大。
由對三個行星輪之行星齒輪系所進行可組裝性分析,發現在分別具有齒厚誤差、徑向銷孔誤差與切向銷孔誤差時,行星齒輪系可組裝之最大容忍誤差值與各種配合齒厚公差的背隙值會呈線性正比關係。
根據各種誤差與設計參數對於行星齒輪分配負載的影響分析結果顯示,切向銷孔誤差對於行星齒輪負載分配影響為最大,其次是齒厚誤差,而徑向銷孔誤差影響甚微。此外當行星托架上某一銷孔存在切向位置誤差,若在該位置上裝設特定齒厚誤差的行星齒輪,則能夠補償切向銷孔誤差對於負載分配的影響。而增加輸入扭矩,也能改善負載分配不均的情形。在使用太陽齒輪浮動設計後,三個行星輪之輪系的負載分配能達到均載,在四、五個行星輪之設計雖也可改善負載不均,但無法達成均載。
摘要(英) Planetary gear sets can achieve higher power density levels, because of multiple parallel power paths by each planet branches. However, load sharing among planets are usually even, due to the manufacturing errors, assembly errors and deformation of parts in planetary gear sets. Therefore, load balancing mechanisms are widely used in multi-planet system. The most common load balancing mechanism is floating sun gear design. In the recent studies, simplified mathematical models are often used for analysis of load sharing in planetary gear system. The goal of the thesis is to establish an approach based on the involute gear geometry for analysis of load sharing among the planet gears, possibilities for assembly, and movable area of the sun gear.
Mesh relation for the planetary gear set is at first derived based on two-dimension involute gear geometry. The possibility to assembly of the planetary gear train under consideration of various design parameters and errors is determined according to the assembly process. The movement of the sun gear is restricted by planets in two different types, i.e. restriction by single planet with double contact tooth pairs, and restriction by double planets with single contact gear tooth pair. In order to find out the movable area of the sun gear center, maximum movable distance of the sun gear in any direction will be obtained according to both the restriction types.. The shared loading among the planets in the planetary gear train is analyzed in the study by using an analytical approach as well as a numerical method. A jumping behavior of the load sharingin the planetary gear set with a fixed sun gear is also explained in the thesis based on the change of the meshing stiffness of the contact gear tooth pair due to the change of the number of the contact tooth pair. The study also introduced object-oriented programming for anakysis to enhance the calculation efficiency.
The analysis result for the movable area of the floating sun gear center in the planetary gear train with 3 to 5 planets showed that the boundary of the movable area is a polygon and the number of the borders is twice the number of the planets. Double planets with single contact tooth pair is the most likely restriction type of the floating sun gear. Furthermore, the movable area of the floating sun gear is proportional to the backlash corresponding to the tooth thickness tolerance.
Acoording to the the analysis result of the assembly condition of the planetary gear set with three planets under consideration of tooth thickness errors, radial pinhole position errors and tangential pinhole position errors, the maximum tolerable error value for assembility is linearly proportional to the backlash.
The analysis of the load sharing in the planetary gear set under consideration of the influences of various types of errors and design parameters shows that the tangential pinhole position error is the critical influence tolerance. Second is the tooth thickness error. The radial pinhole position error has little effect on the load sharing behavior. In addition, the uneven load sharing due to a tangential pinhole position error can be compensated with installation of a planet gear on the pinhole position with specific tooth thickness. Furthermore, increased input torque is also ablbe to reduce the uneven load sharing. In case of floating sun design, the even load sharing among planets can be achieved for the planetary gear train with three planets. Similary the load sharing in the gear trains with four or five planets can be also improved, but uneven.
關鍵字(中) ★ 物件導向程式
★ 太陽齒輪浮動
★ 負載分配
★ 行星齒輪機構
關鍵字(英) ★ object-oriented programming
★ floating sun gear
★ load sharing
★ planetary gear transmission
論文目次 摘要 ............................................................................................................................... i
Abstract ........................................................................................................................ iii
謝誌 .............................................................................................................................. vi
目錄 ............................................................................................................................. vii
圖目錄 ........................................................................................................................... x
表目錄 ......................................................................................................................... xv
符號對照表 ................................................................................................................ xvi
第1 章 前言 ........................................................................................................ 1
1.1 研究背景 ................................................ 1
1.2 文獻回顧 ................................................ 2
1.3 研究目的 ................................................ 4
1.4 論文架構 ................................................ 5
第2 章 研究方法 ................................................................................................ 7
2.1 研究架構 ................................................ 7
2.2 漸開線齒輪對嚙合關係 .................................... 9
2.3 行星齒輪機構組裝條件 ................................... 10
2.4 齒輪受負載接觸撓度分析 ................................. 12
2.4.1 解析解模型 .......................................... 13
2.4.2 數值方法解模型 ...................................... 17
第3 章 漸開線齒輪之行星齒輪機構負載分析模式 ...................................... 20
3.1 行星齒輪系誤差 ......................................... 20
3.2 行星齒輪機構組裝基本關係 ............................... 22
3.2.1 行星齒輪機構嚙合關係 ................................ 24
3.2.2 無誤差太陽齒輪固定之組裝關係 ........................ 27
3.2.3 具誤差太陽齒輪固定下太陽─行星齒輪對齒間間隙 ........ 28
3.2.4 具誤差太陽齒輪浮動下太陽─行星齒輪對齒間間隙 ........ 28
3.3 行星齒輪機構可組裝性分析 ............................... 28
3.4 浮動太陽齒輪中心位置分析 ............................... 33
3.4.1 單一行星齒輪拘束 .................................... 33
3.4.2 兩行星齒輪拘束 ...................................... 34
3.5 各齒輪對接觸位置 ....................................... 36
3.5.1 各齒輪對接觸開始與終了位置 .......................... 36
3.5.2 任意嚙合狀況下各齒輪對接觸位置 ...................... 39
3.6 行星齒輪機構負載分析模型 ............................... 44
3.7 固定太陽齒輪之行星齒輪系負載分析 ....................... 48
3.7.1 固定太陽齒輪之行星齒輪機構靜力平衡關係 .............. 48
3.7.2 行星齒輪機構負載解析解分析 .......................... 50
3.7.3 行星齒輪機構負載數值解分析 .......................... 58
3.8 浮動太陽齒輪之行星齒輪系負載分析 ....................... 60
3.9 負載分配率定義 ......................................... 62
第4 章 物件導向程式模組建立 ...................................................................... 63
4.1 物件導向程式設計 ....................................... 63
4.2 物件類別模型架構 ....................................... 64
4.2.1 齒輪物件模組 ........................................ 70
4.2.2 行星齒輪系物件模組 .................................. 75
第5 章 浮動太陽齒輪中心可動範圍分析 ...................................................... 83
5.1 不同行星齒輪個數之浮動太陽齒輪中心可動範圍 ............. 84
5.2 不同公差下可動範圍分析 ................................. 90
第6 章 行星齒輪機構組裝分析 ...................................................................... 94
6.1 分析參數建立 ........................................... 94
6.2 背隙值與齒厚誤差 ....................................... 95
6.3 背隙值與徑向銷孔誤差 ................................... 97
6.4 背隙值與切向銷孔誤差 ................................... 99
第7 章 影響行星齒輪機構負載分配要因分析 ............................................ 102
7.1 齒數之影響與分析齒輪數據選定 .......................... 105
7.2 不同行星齒輪個數 ...................................... 108
7.3 齒厚誤差 .............................................. 114
7.3.1 誤差值變動對負載分配影響 ........................... 114
7.3.2 嚙合過程中負載分配 ................................. 116
7.4 徑向銷孔誤差 .......................................... 118
7.4.1 誤差值變動對負載分配影響 ........................... 118
7.4.2 嚙合過程中負載分配 ................................. 120
7.5 切向銷孔誤差 .......................................... 121
7.5.1 誤差值變動對負載分配影響 ........................... 121
7.5.2 嚙合過程中負載分配 ................................. 123
7.6 誤差綜合影響 .......................................... 125
7.7 嚙合剛性 .............................................. 126
7.8 扭矩 .................................................. 130
第8 章 結論與展望 ........................................................................................ 133
8.1 結論 .................................................. 133
8.2 未來展望 .............................................. 134
參考文獻 ................................................................................................................... 135
附錄一 程式變數符號對照表 ...................................................................... 138
附錄二 物件屬性方法表 .............................................................................. 145
參考文獻 1.蔡錫錚 葉湘羭 “風力發電機齒輪增速機之設計與發展”。機構與機器設計,中華民國機構與機器原理學會會刊,第十九卷第四期,2008。
2.漸開線齒輪行星傳動的設計與製造編委會“漸開線齒輪行星傳動的設計與製造”。機械工業出版社,中國北京,2002。
3.Hidaka, T., and Terauchi, Y., “Dynamic Behavior of Planetary Gear¬¬¬-1st Report, Load Distribution in Planetary Gear,” Bull. JSME, 19, pp. 690-698, 1976
4.Hidaka, T., Terauchi, Y., and Dohi, K., “On the relation between the Run Out Errors and the Motion of the Center of Sun Gear in a Stoeckicht Planetary Gear,” Bull. JSME, 22, pp. 748-754, 1979.
5.Hidaka, T., Terauchi, Y., and Nagamura, K., “Dynamic Behavior of Planetary Gear-7th Report, Influence of the Thickness of Ring Gear,” Bull. JSME, 22, pp. 1142-1149, 1979.
6.Hayashi, T., Li, Y. X., Hayashi, I., Endou, K., and Watanabe, W., “Measurement and Some Discussions on Dynamic Load Sharing in Planetary Gear,” Bull. JSME, 29, pp. 2290-2297, 1979.
7.Yoshino, M., Yanabe, S., Sato, H., “Self-Centering Characteristics of Floating Sun Gear in a Star-Type Planetary Gear Train,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 63, No. 611, pp. 2270-2277, 1997.
8.Yoshino, M., Yanabe, S., “Self-centering Path and Abnormal vibration Orbit of Floating Sun Gear in Star-Type Planetary Gear Train : Numerical Simulation Considering Effects of Friction Force Acting on Contact Teeth,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 66, No. 649, pp2948-2953, 2000.
9.Kahraman, A., “Load Sharing Characteristics of Planetary Transmissions,” Mech. Mach. Theory, 29, pp. 1151-1165, 1994.
10.Singh, A., “Application of a System Level Model to Study the Planetary Load Sharing Behavior,” ASME J. Mech. Des., 127, pp. 469-476, 2005.
11.Singh, A., “Load sharing behavior in epicyclic gears: Physical explanation and generalized formulation,” Mechanism and Machine Theory, 45, pp.511–530, 2010.
12.Bodas, A., and Kahraman, A., “Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets,” JSME Int. J., Ser. C, 47, pp. 908-915, 2004.
13.吳思漢,“近似線接觸型態之歪斜軸漸開線錐形齒對齒面接觸強度之研究”。國立中央大學機械工程學系博士論文,2009。
14.葉湘羭,“具行星齒輪浮動之行星齒輪機構靜態負載分析”。國立中央大學機械工程學系碩士論文,2010。
15.Terauchi, Y., Nagamura, K., “Study on Deflection of Spur Gear Teeth : 2nd Report, Calculation of Tooth Deflection for Spur Gears with Various Tooth Profiles,” Bulletin of JSME , Vol. 24, No. 188, pp. 447-452, 1981.
16.Oda, S., Miyachika, K., Shimizu, H., “Practical Formula for Tooth Deflection of Internal Spur Gear,” Bulletin of JSME , Vol. 29, No. 257, pp. 3905-3910, 1986.
17.Karlheinz Roth, “Gear Engineering, involute cylindrical gearing (in German),” 2nd Ed, Springer Verlag, 2001.
18.Johnson, K. L., “Contact Mechanics,” Press Syndicate of the University of Cambridge, Cambridge, 1985.
19.Martin, J., Odell, J. 原著 陳玄玲譯,“物件導向分析與設計”。松崗電腦圖書資料股份有限公司,臺北,1994。
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2010-12-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明