博碩士論文 983203020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.191.97.242
姓名 葉湘羭(Siang-yu Ye)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具行星齒輪浮動之行星齒輪機構靜態負載分析
(Analysis of Static Load Sharing in Planetary Gear Sets with a Floating Planet Gear.)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 行星齒輪傳動具有功率重量比高、傳動比大以及傳動平穩效率高等優點,故被廣泛應用於車輛、船舶機械、產業機械與風力發電機等機械傳動系統上,但在實際運用上,卻會受到加工或組裝誤差等因素之影響,無法使行星齒輪間負載均勻分配,意味著行星齒輪機構無法因行星齒輪數目增加而能提供更大的扭力傳動。為了解決負載不均問題,一般常使用均載設,使齒輪構件浮動或利用撓性方法給予齒輪自由度,以達成行星齒輪間的負荷可以平均分佈。
本研究探討以行星齒輪浮動為均載機構之行星齒輪傳動在具加工與組裝等製造誤差下之靜態負載分析。論文首先以行星齒輪系嚙合幾何關係探討製造誤差對於齒隙之影響,並以影響係數法建立行星齒輪系之多齒輪對嚙合之靜態負載數值分析模式,透過此一方法可得到行星齒輪間負載分配與接觸齒面負載分佈。再進一步分析行星齒輪浮動下之靜態負載,分析模式以多齒輪對嚙合負載數值分析模型為基礎,配合行星齒輪系作用力平衡與齒對嚙合關係之齒間間隙之條件,以求解各行星齒輪浮動位置參數、齒輪齒面應力分佈以及每一對嚙合齒對分配負載。
為了驗證行星齒輪浮動靜態分析模式之可行性與可信度,本論文使用有限元素方法分析不同行星齒輪加工與組裝誤差情況下,分別比較行星齒輪固定與浮動齒輪的負載分配與齒面應力分佈,並得到相近結果。更進一步討論不同行星齒輪個數、不同行星齒輪彈性銷剛性以及不同輸入扭力下,行星齒輪浮動對於負載之影響。
根據各種誤差與設計參數對於行星齒輪負載分配影響分析顯示,在不同行星齒輪個數(3~6個)且齒輪不浮動下,齒輪切向銷孔誤差、齒厚誤差與徑向銷孔誤差皆會影響行星齒輪負載分配造成齒輪負載不均情形,其中以切向銷孔誤差影響最大,齒厚誤差影響次之,徑向銷孔誤差影響甚微。而在行星齒輪浮動時,可使行星齒輪負載分配均勻。比較兩種行星齒輪彈性銷剛性,其分析結果顯示當行星齒輪彈性銷剛性越小,行星齒輪負載分配越均勻。比較三種不同輸入扭力,當輸入扭力增加行星齒輪負載分配較為均勻。
摘要(英) Planetary gear drives have the advantages of high power-weight ratio, large gear ratio, as well as smooth transmission with high efficiency. They are often widely applied in mechanical power transmission system, such as vehicles, ship machinery, production machinery, and wind turbines. However, in the practice, the load sharing among the planets will be not even due to the presentence of manufacturing and assembling errors. It means the planetary gear set can’t provide power transmission with a larger torque even by increasing the number of planetary gears. In order to solve the problem, many load balancing mechanisms are applied to meet the requirement of even load sharing by using flexible elements or floating gears to have more degrees of freedom. One of the well-known methods for the planetary gear drives is the design with flexible pins, i.e. the planet gears are flexibly supported.
The aim of this study is to analyze the static load sharing and load distribution in planetary gear sets with a floating planet gear in the presentence of manufacturing and assembly errors. The geometrical relation between the manufacturing errors and the gaps of the engaged teeth among the gears of the planetary gear drives is at first analyzed. Based the influence coefficient method, a numerical method of loaded tooth contact analysis for planetary gear sets in the case of multiple gear-pairs and multiple tooth-pairs is also developed to analyze the load sharing among the planet gears and the load distribution on the engaged tooth flanks., The loading in the planetary gear sets with flexible supported planet gears is further analyzed by using the developed LTCA method and the conditions of load equilibrium of the planets and the relation of the tooth gaps due to the position change of the planets. The unknowns can be thus solved, including the balanced positions of the planets, the contact stresses distribution on the flanks and also the load sharing among the planet gears.
In order to verify the feasibility of this theory, the analyzed results for the planetary gear sets with manufacturing and assembly errors are also compared with the finite element method under consideration of the planetary gear sets with rigidly or flexibly supported planets. Both the calculated results are in good agreement. The influences of the number of the planets, the stiffness of the planet supporting, and the transmitted torque on the load sharing are also discussed.
The analysis of the load sharing in planetary gear set under consideration of the influences of various types of errors and design parameters shows that with different planet number the tangential pinhole position error, tooth thickness error and the radial pinhole position error all can influence the load sharing of planet gears. Which the pinhole position error is the critical influence tolerance, the tooth thickness error is the second and the radial pinhole position error has little effect. In case of floating planet gears design, the even load sharing among planets can be achieved. In the comparison of design parameters, the smaller planet flex-pin stiffness the more even load sharing and increased input torque can reduce the uneven load sharing.
關鍵字(中) ★ 多齒輪對齒面接觸分析
★ 有限元素分析
★ 負載分佈
★ 負載分配
★ 行星齒輪系
關鍵字(英) ★ Planetary Gear
★ Finite Element Method(FEM)
★ Contact Analysis of Multiple Gear-pairs
★ Load Distribution
★ Load Sharing
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 viii
表目錄 xii
符號對照表 xiii
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 論文架構 5
第2章 理論基礎 6
2.1 漸開線正齒輪齒面方程式 6
2.2 行星齒輪嚙合幾何關係 9
2.2.1 齒對嚙合與齒隙關係 10
2.2.2 加工組裝誤差與齒隙關係 12
2.3 齒輪對受負載接觸分析 13
2.3.1 單齒對接觸模型 14
2.3.2 多齒對接觸模型 23
第3章 行星齒輪系受負載接觸分析 24
3.1 嚙合齒對齒面間距 24
3.2 行星齒輪系齒對接觸模型 26
3.2.1 單一行星齒輪 27
3.2.2 多個行星齒輪 29
3.3 行星齒輪浮動之負載分析 34
3.3.1 參數定義 35
3.3.2 齒間間隙變化 36
3.3.3 靜力平衡方程式 36
3.4 數值計算流程 37
3.4.1 行星齒輪固定位置之受負載接觸分析 37
3.4.2 行星齒輪浮動位置之受負載接觸分析 39
第4章 物件導向程式模組 42
4.1 物件導向程式設計 42
4.2 物件類別模型架構 43
4.2.1 行星齒輪組物件模組 44
4.2.2 齒輪物件模組 45
第5章 有限元素分析法驗證 47
5.1 有限元素模型建立 47
5.2 材料性質與邊界條件設定 49
5.2.1 材料性質 49
5.2.2 負載設定與拘束設定 49
5.3 案例分析與比較 50
第6章 誤差與設計參數對負載分配之影響分析 54
6.1 不同加工組裝誤差影響 54
6.1.1 切向銷孔位置誤差 56
6.1.2 徑向銷孔位置誤差 61
6.1.3 齒厚誤差 62
6.2 行星齒輪個數影響 66
6.2.1 切向銷孔位置偏差 67
6.2.2 齒厚誤差 70
6.3 行星齒輪彈性銷剛性影響 72
6.4 輸入扭力影響 73
第7章 結論與未來展望 75
7.1 結論 75
7.2 未來展望 76
參考文獻 77
附錄一. 81
參考文獻 1 蔡錫錚、葉湘羭、黃冠霖, “以解析法分析製造誤差對行星齒輪傳動機構負載分配之影響",2010年台灣風能學術研討會論文集,12/17,2010
2 蔡錫錚,葉湘羭,“風力發電機齒輪增速機之設計與發展”, 機構與機器設計,中華民國機構與機器原理學會會刊,第十九卷第四期,2008。
3 Hidaka T, Sugimoto N, Ishida T., “Effects of errors of elements on load distribution in planetary gears with various load equalizing machanisms”. Japanese Mechan- ical Academic Society Collection, Vol.52, No. 480, 1986, pp. 2200-2206
4 Timken, http://www.timken.com/en-us/
5 Fox, Gerald P. and Jallat, Eric, “Use of the integrated flexpin bearing for improving the performance of epicyclical gear systems”. Proceedings of the ASME Design Engineering Technical Conference (9th International Power Transmission and Gearing Conference), v 4 B, p 1003-1011, 2003
6. 曾瑞堂,張永源,蔡鋒穎, “具有Flexible Pin均載機構之變形分析”。台灣風能學術研討會,2008/12/13
7 Hidaka T, Sugimoto N, Ishida T., “Effects of errors of elements on load distribution in planetary gears with various load equalizing machanisms”. Japanese Mechan- ical Academic Society Collection, Vol.52, No. 480, 1986,pp. 2200-2 206
8 Singh A., “Application of a system level model to study the planetary load sharing behavior”. ASME, Journal of mechanical design, Vol. 127, No. 12, 2005, pp.469-476.
9 A. Bodas, A. Kahraman, “Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets”. JSME International Journal Series C, Vol. 47, 2004, pp.908
10 Ma, P. and Botman, M., “Load Sharing in a Planetary Gear Stage in the Presence of Gear Errors and Misalignments”. Transactions of the ASME, Vol.107 , 1985, 84-DET-54.
11 T .Hidaka, and Y. Terauchi, “Dynamic Behavior of Planetary Gear—. 1st Report, Load Distribution in Planetary Gear”. Bull. JSME, 1976,. 19, pp. 690–698.
12 T. Hidaka, Y. Terauchi, K. Ishioka, “Dynamic behaviour of planetary gear (2nd report: displacement of sun gear and ring gear)”. Bulletin of the JSME-Japan Society of Mechanical Engineers ,Vol.19 , No. 138, 1976, pp.1563–1570.
13 Hidaka, T., Terauchi, Y., and Nagamura, K., 1979, “Dynamic Behavior of Planetary Gear—6th Report, Influence of Meshing-Phase”. Bull. JSME, 22, pp. 1026–1033.
14 Hidaka, T., Terauchi, Y., and Nagamura, K., “Dynamic Behavior of Planetary Gear-7th Report, Influence of the Thickness of Ring Gear”. Bull. JSME, Vol. 22, pp. 1142-1149, 1979.
15 R.G. Parker, V. Agashe, S.M. Vijayakar, “Dynamic response of a planetary gear system using a finite element/contact mechanics model”. Journal of Mechanical Design , Vol. 122 , No. 3, 2000, pp. 304–310.
16 Singh, A. ; Kahraman, A. and Ligata, H. “Internal Gear Strains and Load Sharing in Planetary Transmissions: Model and Experiments”. Transactions of the ASME, Journal of Mechanical Design, v 130, July 2008, pp. 072602-1~-10.
17 X. Wu and R.G. Parker, “Modal properties of planetary gears with an elastic continuum ring gear”. ASME Journal of Applied Mechanics, Vol. 75 , 2008, p. 031014-1-12
18 Singh, A. ; Kahraman, A. and Ligata, H. “Internal Gear Strains and Load Sharing in Planetary Transmissions: Model and Experiments”. Transactions of the ASME, Journal of Mechanical Design, v 130, July 2008, pp. 072602-1~-10.
19 Satoshi, O.; Kouitsu, M. and Hisao, S. “Practical Formula for Tooth Deflection of Internal Spur Gear”. Bulletin of JSME, Vol. 29, No. 257, pp. 3905-3910, 1986
20 吳思漢,”近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究”。國立中央大學機械工程學系博士論文,2009。
21 蔡錫錚、黃冠霖, “太陽齒輪浮動之行星齒輪機構嚙合分析”。中國機械工程學會第二十六屆全國學術研討會論文集 台南市,11/20~21,2009
22 Wu, S.-H., and Tsai, S.-J., “Contact Stress Analysis of Skew Conical Involute Gear Drives in Approximate Line Contact”. Mechanism and Machine Theory, Vol. 44,No. 9 , 2009, pp. 1658-1676
23 洪國勝、張建原,”Delphi 6 程式設計快樂上手”。松岡電腦圖書資料股份有限公司,2001
24 黃冠霖,”具太陽齒輪浮動之行星齒輪機構負載分析”。國立中央大學機械工程學系博士論文,2010。
25 羅文國,”漸開線直齒錐形齒輪齒根應力計算模式之初步研究”。國立中央大學,碩士論文2005。
指導教授 蔡錫錚(Shyi-jeng Tsai) 審核日期 2011-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明