博碩士論文 973206003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.104.61
姓名 林志鴻(Chih-Hung Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 淨水污泥再利用於水泥生料
(Reuse of water treatment plant sludge as cement raw materials)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以淨水廠常見PAC與硫酸鋁污泥為研究對象,於平日及颱風天分別進行採樣,初步評估其再利用於水泥生料之可行性後,以水泥生料之理論配比設計分析的結果燒製環保水泥,探討其在水硬係數=1.7、2.0、2.3;矽氧係數=1.9、2.6、3.2;鋁鐵係數=1.5、2.0、2.5與不同取代率下(0%、50%、100%)對環保水泥品質的影響。
研究結果顯示,不同出處之淨水污泥,其化學組成都在一定範圍內,且灰分均達80%以上。此外,在化學組成與晶相方面,也都與黏土相似,因此均適合替代黏土作為水泥生料。本研究發現,含淨水污泥之生料經燒結冷卻程序後所製成之熟料,在礦物生成上與純水泥相同並無差異,在不同水泥係數值條件下也發現,水硬係數=2.3時生成最多的C3S(74.4%);水硬係數=1.7時生成最多的C2S(59.27%),另外,實驗燒製之12組水泥熟料其游離石灰皆小於1%,且製程燒失量介於31%~37%間,符合實場品管規範,研究中所燒製水泥熟料皆與卜特蘭一型水泥類似,其單礦物組成均含有C3S、C2S、C3A及C4AF。本研究進一步選擇對照組及C2S、C3S生成量最多之水硬係數系列,探討燒結之升溫速度的影響,結果顯示在1210~1410℃時,升溫速率愈快,愈能提高C2S、C3S晶相強度與生成量,故此,後續以最佳升溫速率20℃/min所燒製而成的水泥熟料,進行水泥漿體及微觀分析。由實驗結果發現,水硬係數=2.3時以C3S為主,因此在養護7天後,即可發生良好的水化反應,發展強度也是最佳;水硬係數=1.7則因熔流點下降,造成熟料熔融,結晶效果不佳,以致28天抗壓強度仍不足。
摘要(英) The objective of this study was initially aimed to evaluate the feasibility of using PAC and alum sludge, obtained individually in ordinary days and typhoon period from water treatment plants, as raw material for cement production. Then, based on the results of theoretical mixing design analysis of cement raw materials, the cement clinker was prepared when hydraulic modules (H.M.) = 1.7、2、2.3, silicate modules (S.M.) = 1.9、2.6、3.2, and iron modules (I.M.) = 1.5、2、2.5, respectively, and at different substitution rates (0%、50%、100%) of sludge for clay. Finally, the effects of various modules on the qualities of eco-cement were investigated.
The experimental results indicated that the percentage of major chemical compositions of sludge from various water treatment plants were all within a certain range and the ash content was above 80%. In addition, the chemical compositions and crystalline phases of water treatment plant sludge (WTPS) were similar to those of clay. Therefore, the WTPS were appropriate to replace clay as one of cement raw materials. It also found that the mineral contents of clinker after sintering and cooling processes had no difference between cement raw materials with and without WTPS. However, at the condition of different cement modules, when hydraulic module was 2.3 produced the maximum amount of C3S (74.4%), while hydraulic module was 1.7 generated the maximum of C2S (59.27%). Furthermore, the contents of free lime in the 12 series cement clinker of this study were all less than 1%, and the weight loss after sintering were in the range of 31%~37%. These results meet the quality requirements for sintered cement clinker and resemble to Portland Type- I cement contained mineral substances of C3S, C2S, C3A, and C4AF.
Moreover, this study selected the control group and hydraulic module groups that produced the maximum amount of C2S and C3S to further investigate the effect of temperature rising rate during the period of sintering process on the quality of eco-cement. The results revealed that the faster rate of temperature rising in the range of 1210 to 1410℃, the more intensity and production of crystalline phase of C2S and C3S occurred. Consequently, cement pastes were prepared from the clinkers sintered at a temperature rising rate of 20℃/min, and the microscopic analysis of the specimens was carried out. The experimental results found that C3S was the major product when hydraulic module = 2.3 and that lead to well hydration reaction and the best strength development at 7 days curing of the cement paste. However, due to the decrease of melting point when hydraulic module = 1.7, the cement clinker had melting phenomenon with ineffective formation of crystalline phase, which resulted in the lowest compressive strength of cement paste at the curing age of 28 days.
關鍵字(中) ★ 環保水泥
★ 水泥漿體
★ 水化反應
★ 水泥係數
★ 淨水污泥
關鍵字(英) ★ cement moduli
★ water treatment plant sludge
★ hydration reaction
★ cement paste
★ ecocement
論文目次 摘要........................................................................................................................... I
Abstract.....................................................................................................................II
目錄........................................................................................................................ IV
圖目錄 ...................................................................................................................VII
表目錄 .................................................................................................................... IX
第一章 前言............................................................................................................. 1
1.1 研究緣起.................................................................................................... 1
1.2 研究目的與內容........................................................................................ 2
第二章 文獻回顧..................................................................................................... 3
2.1 淨水污泥產量及特性................................................................................. 3
2.1.1 淨水污泥來源.................................................................................. 3
2.1.2 淨水污泥的特性.............................................................................. 3
2.1.3 淨水污泥的產量.............................................................................. 7
2.2 淨水污泥再利用現況................................................................................11
2.3 水泥的燒製與組成................................................................................... 20
2.4 水泥配料係數.......................................................................................... 24
2.5 水泥熟料與水泥的品質檢驗................................................................... 30
2.5.1 晶相結構與轉換相........................................................................ 30
2.5.2 溫度之控制................................................................................... 32
2.5.3 其他微量物質................................................................................ 33
2.5.4 水泥品質檢驗................................................................................ 34
2.6 水泥的水化反應與微觀結構................................................................... 37
2.6.1 水泥的水化反應............................................................................ 37
2.6.2 水泥漿體微觀結構........................................................................ 42
第三章 理論配比設計分析 ................................................................................... 45
3.1 水泥生料理論配比設計之計算方法......................................................... 45
3.2 無淨水污泥取代...................................................................................... 48
3.3 淨水污泥取代黏土(50%) ................................................................... 51
3.4 淨水污泥全取代黏土............................................................................... 53
3.5 生料配比分析........................................................................................... 56
第四章 研究方法................................................................................................... 59
4.1 實驗流程與內容...................................................................................... 59
4.1.1 淨水污泥及水泥原料的製備......................................................... 59
4.1.2 不同淨水污泥成份分析................................................................ 59
4.1.3 淨水污泥取代黏土作為水泥生料之資源化研究.................... 61
4.2 實驗材料.................................................................................................. 64
4.3 主要設備與儀器...................................................................................... 65
4.3.1 主要實驗設備................................................................................ 65
4.3.2 主要分析儀器................................................................................ 66
4.4 實驗方法.................................................................................................. 68
第五章 結果與討論............................................................................................... 78
5.1 淨水污泥餅基本特性分析....................................................................... 78
5.1.1 三成份(水份、灰份、可燃份)性質分析.................................. 78
5.1.2 淨水污泥餅化學組成分析............................................................ 80
5.1.3 礦物結晶型態分析........................................................................ 82
5.2 水泥熟料外觀分析................................................................................... 84
5.2.1 試燒熟料外觀................................................................................ 84
5.2.2 環保水泥熟料外觀........................................................................ 85
5.3. 各組水泥熟料之特性分析...................................................................... 91
5.3.1 游離石灰分析................................................................................ 91
5.3.2 潛在礦物含量計算推估................................................................ 93
5.3.3 XRD 結晶相分析........................................................................... 96
5.4 燒製條件影響探討..................................................................................101
5.5 各組水泥之品質檢驗分析與漿體孔隙分析...........................................104
5.5.1 各組配比水泥化學成分規定........................................................104
5.5.2 各組配比水泥物理性質規定........................................................107
5.5.3 水泥漿體孔隙分析.......................................................................113
5.6 各組環保水泥漿體之水化產物分析.......................................................117
5.6.1 XRD 結晶相分析..........................................................................117
5.6.2 TGA 分析......................................................................................121
5.6.3 SEM 微觀分析..............................................................................124
第六章 結論與建議..............................................................................................127
6.1 結論.........................................................................................................127
6.2 建議.........................................................................................................129
參考文獻 ...............................................................................................................130
附錄.......................................................................................................................140
附錄二 淨水廠淨水污泥近五年再利用方式 ........................................141
附錄一 無淨水污泥取代黏土之配比計算資料....................................142
附錄三 淨水污泥取代黏土 50%之配比計算資料................................167
附錄四 淨水污泥 100%取代黏土之配比計算資料..............................195
參考文獻 參考文獻
Abdo, M. S. E., Ewida, K. T., and Youssef, Y. M. "Recovery of Alum from Wasted Sludge Produced from Water Treatment Plants." Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, 28(6), 1205-1216(1993).
Altun, I. "Effect of CaF2 and MgO on sintering of cement clinker." Cement and Concrete Research, 29, 1847-1850(1999).
Ampadu, K. O., and Kazuyuki Torii."Characterization of ecocemment pastes and mortars produced form." Cement and Concrete Research, 31, 431-436(2001).
Aldeeb, A. A., Qasim, S. R., Puppala, A. J., and Anderson, C. F."Physical and Engineering Properties of Treatment Plant Residuals and Disposal." Journal / American Water Works Association, 95(8), 127-137(2003).
Beretka, J., B. de Vito, L. Santoro, N. Sherman., and G. L. Valenti,"Utilisation of industrial wastes and by-products for the synthesis of special cements." Resources, Conservation and Recycling, 9, 179-190(1993).
Basta, N., and Dayton, E. A."Characterization of Drinking WaterTreatment Residuals for Use as a Soil Substitute." Water Environment Research, 73(1), 52-57(2001).
Basibuyuk, M., and Kalat, D. G."The Use of Waterworks Sludge for The Treatment of Vegetable Oil Refinery Industry Wastewater." Journal of Environment Technology, 25(3), 373-380(2004).
Babatunde, A. O., and Zhao, Y. Q."Constructive Approaches Toward Water Treatment Works Sludge Management :An International Review of Beneficial Reuses." Environmental Science and Technology, 37, 129-164(2007).
Chan, C. J., Kriven, W. M., and Young, J. F."Physical stabilization of β to γ transformation in dicalcium silicate." Journal of the American Ceramic Society, 75, 1621-1627(1992).
Dhage, S. S., Paramasivam, R., Ravindar Rao, R., and Andey, S. P. "Recovery of Alum from Water Treatment Sludge by Liquid Ion Exchange (LIE) Technique." Journal of Indian Water Works Association, 17(2), 193-199(1985).
Elliott, H. A., and Dempsey, B. A."Agronomic Effects of Land Application of Water Treatment Sludges." Journal of the American Water Works Association, 83(4), 126-131(1991).
Goldbold, P., Lewin, K., Graham, A., and Barker, P."The Potential Reuse of Water Utility Products as Secondary Commercial Materials". WRC technical report series. NoUC 6081, project contract no.12420-0, Foundation for Water Research, UK(2003).
Hewlett, P. C."Chemistry of Cement and Concrete." Butterworth-Heineman, New York(1988).
Kikuchi, R."Recycling of Municipal Solid Waste for Cement Production: Pilot-scale Test for Transforming Incineration Ash of Solid Waste into Cement Clinker." Resources, Conservation and Recycling, 31(2), 137-147(2001).
Locher, F. W. "Process Technology and Cement Properties." Zement-Kalk-Gips, 31, 269-277(1978).
Locher, F. W., W. Richartz, and S.Sprung . "Setting of Cement-PartII:Effect of Adding Calcium Sulphate." Zement-Kalk-Gips, 33, 271-277(1980).
Ludwig, V."Influence on sintering behavior of cement raw meal." Zement-Kalk-Gips, 34, 175-185(1981).
Masschelein, W. J., Devleminck, R., and Genot, J."Feasibility of Coagulant Recycling by Alkaline Reaction of Aluminium Hydroxide Sludges." Water Research, 19(11), 1363-1368(1985).
Monshi, A., and Asgarani, M. K."Producing Portland cement form iron and steel slags and limestone. " Cement and Concrete Research, 29, 1373-1377(1999).
MHW,"Water Treatment Principles and Design", 2nd Ed., John Wiley & Sons, New York(2005).
Novak, J.M., and Watts, D.W." Increasing the phosphorus sorption
capacity of southeastern coastal plain soils using water treatment
residuals." Soil Science, 169(3), 206-214(2004).
Novak, J. T."Dewatering of Sewage Sludge." Drying Technology, 24, 1257-1662 (2006).
Odler, I., and O. Schmidt."Structure and properties of Portland cement clinker doped with Zinc Oxide." Journal of the American Ceramic Society, 63, 13-16(1980).
Osbaeck, B., and E. S. Jones."The influence of the content and distribution of Al2O3 on the hydration of Portland cement." Proc., 7th intl. Cong. Chem. Cement , 135-140, Paris(1980).
Odler, I., and H. Zhang."Investigations on high SO3 portland clinkers and cements I. clinker synthesis and cement preparation. " Cement and Concrete Research, 26, 1307-1313(1996).
Onaka, T."Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge." Water Science and Technology, 41, 93-98(2000).
Peters, J. M., and Basta, N. T."Reduction of Excessive Bioavailable Phosphorus in Soils by Using Municipal and Industrial Wastes." Journal of Environmental Quality, 25(6), 1236-1241(1996).
Richardson, I. G. "The nature of hydration products in hardened cement pastes."Cement and Concrete Composites, 22, 97-113(2000).
Strunge, J., D. Knofel, and I. Dreizler."Influence of Alkalies and Sulphur and the properties of cement."Zement-Kalk-Gips,38, 150-158(1985).
Stephan, D., Mallmann, R., Knoefel, D., and Haerdtl, R.,"High intakes of Cr, Ni, and Zn in clinker: Part I. Influence on burning process and formation of phases." Cement and Concrete Research,29, 1949-1957(1999).
Stutzman, P., and S. Leigh."Phase composition analysis of the NIST reference clinkers by Optical Microscopy and X-ray powder Diffraction." NIST Technical Note, 1441(2002).
Taylor, H. F. W."Cement Chemistry." Academic Press, New York(1990).
Tay, J. H., and K. Y. Show."Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materials – an Innovative Approach to Ultimate Sludge Disposal. " Water Science and Technology, 26, 1165-1174(1992).
Tay, J. H., and K. Y. Show."The Use of Lime-blended Sludge for Production of Cementitious Material. " Water Environment Research, 64, 6-12(1992b).
Tay, J. H., and K. Y. Show."Manufacture of cement from sewage sludge." Journal of Materials in Civil Engineering, 5, 19-29(1993).
Westerhoff, G. P., and Cornwell, D. A."Lime Softening Sludge Treatment and Disposal." Proceedings - AWWA Annual Conference, 167-194(1981).
Wang, M. C., Hull, J. Q., Jao, M., Dempsey, B. A., and Cornwell, D. A. "Engineering Behavior of Water Treatment Sludge." Journal of Environmental Engineering, 118(6), 848-864 (1992).
Wu, C.-H., Lin, C.-F., and Horng, P.-Y."Adsorption of Copper and Lead Ions onto Regenerated Sludge from a Water Treatment Plant " Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 39(1), 237-252(2004).
Yang, Y., Zhao, Y. Q., Babatunde, A. O., Wang, L., Ren, Y. X., and Han, Y."Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. " Separation and Purification Technology, 51, 193-200(2006).
日本財團法人水道技術研究中心,「淨水污泥再利用之調查(平成7-9年)」(1998)。
江康鈺、陳宜晶、簡光勵,「淨水污泥燒製磚材之材料特性研究」,自來水會刊,第23卷,第3期,第38-48頁(2003)。
吳岳澤,「污泥灰渣全資源化水泥砂漿之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2006)。
林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,碩士論文,國立中央大學環境工程研究所,中壢(2003)。
林聖寰,「淨水污泥取代黏土作為水泥生料對卜特蘭水泥影響之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2003)。
林東燦,「污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究」,碩士論文,國立中央大學環境工程研究所,中壢(2006)。
紀宗男,「淨水污泥餅資源化應用於管溝回填材料之研究」,碩士論文,淡江大學土木工程學系,台北(2003)。
康世芳,「淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估」,台北自來水事業處委託研究計劃研究報告書,台北(2001)。
曾迪華、潘時正、李智強、李釗,「研磨加工改良下水污泥灰渣卜作嵐活性及砂漿性質」,第十屆下水道技術研討會論文集,第103-112頁,台北(2000)。
廖明聰,「以淨水污泥做為綠美化用地之土壤改良劑」,碩士論文,屏東科技大學環境工程與科學系,屏東(2004)。
廖慕蓉,「淨水污泥燒製富β-C2S水泥之研究」,碩士論文,國立成功大學環境工程學系,台南(2007)。
羅雅含,「工業廢水污泥/淨水污泥共同融熔處理之資源化研究」,碩士論文,國立台灣大學環境工程研究所,台北(2002)。
王年福,「水泥製程於資源再利用之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
朱進平、李篤中,「污泥處置(III):污泥後處理」,國立台灣大學台大工程學刊,第83期,第59-81頁(2001)。
宋祖芳,水泥試驗,臺灣區水泥工業同業公會印行,台北(1971)。
尾花博,「新資源再利用體系-環保水泥」,87年廢棄物處理與資源回收國際研討會論文集,台北(1998)。
沈永年、王河源、林仁益、郭文田,「混凝土技術」,全華出版社,台北(2004)。
沈政儒,「焚化飛灰與下水污泥灰共熔之操作特性與卜作嵐材料特性之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2005)。
花蓮縣環保局,「花蓮縣事業廢棄物之貯存、清除、處理之方法及最終處置」,花蓮縣環保局研究報告,花蓮(1997)。
邱承美,「儀器分析原理」,科文出版社,台北(1981)。
孫國鼎,「水庫淤泥及淨水污泥在利用製磚之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2002)。
郭容忍,「焚化灰渣作為水泥生料對卜特蘭水泥影響之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2004)。
陳宗裕,「燒製參數對無機廢棄物合成水泥熟料晶相之影響」,碩士論文,國立成功大學環境工程學系,台南(2007)。
顏笠安,「淨水場混凝污泥質量特性與脫水泥餅再利用初步評估」,碩士論文,國立中央大學土木工程研究所,中壢(2009)。
劉又瑞,「淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究」,碩士論文,國立交通大學環境工程研究所,新竹(2002)。
謝寅雲,「淨水污泥/工業廢水污泥之燒結資源化研究」,碩士論文,國立台灣大學環境工程研究所,台北(2001)。
謝瑞仁,「生態水泥生料配比設計之探討」,碩士論文,國立高雄第一科技大學營建工程系,高雄(2007)。
歐陽嶠暉、許鎮龍、藍文忠,「都市污水處理廠之污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,第19-33頁(1998)。
鏡田誠、鈴木英人,"Summary of the technical seminar for Taiwan cement manufacturers association on Waste and Cement industry in Japan. " Taiheiyo cement corporation and Taiheiyo engineering corporation(2003).
龔人俠,「水泥化學概論」,臺灣區水泥工業同業公會印行,再版,台北(1977)。
張祖恩,「廢污資源化零排放策略」,2000年民間環保政策白皮書研討會,第1-19頁,(2000)。
荒川康夫,「石膏化學的研究動向」,ギプスおよび石灰,第167期,第135-142頁(1980)。
宇智田,「環保水泥(Eco-Cement)生產技術及應用」,88-89年度水泥工業研討專輯,台灣區水泥工業同業公會,第15-26頁,(1999)。
美國混凝土協會材料試驗(ASTM)彙編。
程月初,「漫談我國水泥工業」,台灣區水泥工業同業公會水泥工業叢書第五輯,(1996)。
黃兆龍,「混凝土性質與行為」,詹氏書局,台北(1997)。
黃忠信,土木材料,三民書局,初版,台北(1998)。
黃志彬、袁如馨、劉又瑞、王敏儒,「淨水污泥燒結資源化利用-製磚與人造骨材的探討」,第十七屆廢棄物處理技術研討會(2002)。
趙文成、劉卓奇,「水泥組成成份與氯離子關係之研究」,碩士論文,國立交通大學環境工程研究所,新竹(1997)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2010-11-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明