博碩士論文 973206020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:13.58.71.140
姓名 賴虹任(Hung-jen Lai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
(Monitoring the coagulation of kaolin with Floc Image Color Analysis (FICA) technology)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例
★ 石門水庫分層取水對於前加氯與混凝成效之影響★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析
★ 地表水中氨氮之生物急毒性研究★ 水足跡盤查分析與節水策略-以某印刷電路板軟板廠為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 混凝是水處理中固液分離的重要程序之一,而在混凝過程中存在著許多因子影響混凝的好壞,其中混凝劑的加藥量是最難控制的一個,目前是由瓶杯實驗及操作經驗來決定加藥量,常有過量加藥的問題,造成藥劑量及後續污泥處理成本的提高。本研究團隊已發展化學混凝之非接觸式監測系統,以期能夠快速得知混凝加藥之成效,唯系統對不同處理條件之適用性並未詳盡調查,也缺乏實廠原水之驗證。
本研究以高嶺土水樣為模擬原水,調整溶液在不同濁度、不同酸鹼值及不同混凝劑劑量下,探討快混階段之RGB變化與RGB值之標準偏差值與顆粒之關聯性。在小型模場中監測不同操作情況,其光訊號變化之情形,並且搭配粒徑分析儀來觀察膠羽顆粒長成的效果,以建立此系統更加完善的可行性。
在混凝過程中膠羽顆粒的變化確實反應在RGB值上,快混過程中之RGB值下降趨勢愈明顯時,混凝效果愈好,慢混過程中RGB跳動幅度愈大,其膠羽顆粒亦較大。透過斜率值之計算可以得到RGB值之變化大小,以分辨混凝效果好壞,藉由斜率-加藥量關係圖可以判定混凝有效藥劑範圍,避免藥劑之浪費。另外,由實驗得知從RGB值之標準偏差值可看出顆粒是否有大小落差,以作為顆粒是否有長成之判斷依據。
摘要(英) Coagulation is an important solid-liquid separation process in potable water/wastewater treatment. Among all the control factors for coagulation, the dosage of coagulant is the most difficult to control. The dosage of coagulant is usually determined by jar test or the experience of operators, which usually leads to an overdose of coagulant. Overdose of coagulant causes high cost for chemicals and for on sludge treatment. So far, in our laboratory, a monitoring system for coagulation process, floc image colorimetric analysis (FICA), to resolve the problems mentioned above has been developed; however, the responses of the monitoring system for various coagulation conditions are not clear and the applications of the system in the control of coagulant dosage have not been clarified yet.
In this research, modeled turbid water is made by kaolin particles. The responses of the FICA to various coagulation conditions, such as initial turbidity, solution pH, and coagulant dosage were investigated. The evolution of RGB values of the suspension images were analyzed.
During coagulation, the solution images varied as the particles grew; as the consequence, the RGB values of the images changed correspondingly.. When the coagulation was effective, the RGB values decreased significantly within rapid-mixing. Then, as the flocs became bigger, the RGB values jumped up as the flocs passing through the observation window and dropped down due to the clear solution during the slow-mixing process. It was found that the slope of the RGB values during rapid-mixing could be used to monitor the coagulation efficiency. As the coagulation efficiency increased, the solution becomes clearer and, thus, the RGB dropped significantly and the slope of RGB values increased. .It is also found that the optimal dosage of coagulant occurred when the slopes of RGB values first hit the bottom. In other words, the optimal coagulation condition could be determined right after the rapid-mixing from jar test, which is much faster than the traditional method. In addition, the standard deviation of the RGB values increased with increasing particle size due to brighter images of flocs.
關鍵字(中) ★ 混凝
★ 光學監測
★ 硫酸鋁
★ 高嶺土
關鍵字(英) ★ image analysis
★ kaolin
★ coagulation
★ alum
論文目次 圖目錄 III
表目錄 VI
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
第二章 文獻回顧 4
2-1混凝與膠凝理論 4
2-1-1膠體粒子 4
2-1-2混凝 6
2-2鋁鹽混凝之影響因子 10
2-2-1 pH值 10
2-2-2混凝劑種類及濃度 11
2-3監測設備 15
2-3-1流導電流偵測技術 16
2-3-2光纖膠羽偵測技術 17
2-3-3膠羽影像色彩分析技術 19
2-4光學原理與色彩特性 21
2-4-1彩色光譜 21
2-4-2 RGB色彩模式 22
2-4-3光散射理論 23
2-4-4光影像訊號之應用 25
第三章 研究方法 28
3-1研究內容 28
3-2實驗藥品 30
3-3實驗設備 31
3-4模場架設 32
3-5實驗方法 34
3-5-1高嶺土水樣配置 34
3-5-2實驗流程 34
3-5-3影像處理系統 36
第四章 結果與討論 39
4-1原水濁度對影像RGB值變化之影響 39
4-1-1濁度與影像RGB值之關係 39
4-1-2高嶺土水樣光散射訊號變化 43
4-2不同初始濁度混凝對影像RGB值之影響 48
4-3 pH值改變之影像RGB值結果 61
4-4不同快混rpm之影像RGB值變化 66
4-5混凝劑劑量改變之影像RGB值結果 70
4-6快混期間RGB下降斜率與加藥量之關係 76
4-7顆粒大小分析 83
4-7-1不同pH值下之SD分析 83
4-7-2加藥量對S.D值之影響 87
4-8原水水樣之影像RGB值變化 92
第五章 結論與建議 98
5-1結論 98
5-2建議 100
參考文獻 101
參考文獻 1. W. Stumm, and J. J. Morgan, “The Solid-Solution Interface”, Aquatic Chemistry, pp.612-614,(1981).
2. A. Amirtharagjah, and C.R. O'Melia, “Coagulation Processes: Destabilization, Mixing and Flocculation”, Water Quality & Treatment.4th, pp.269-365,(1990).
3. Y. Ganz, “Water Treatment”, American Water Works Association, 1, (2003).
4. 徐宏銘,”應用流導電流偵測技術決定混凝最佳加藥量之研究”,國立交通大學環境工程研究所碩士論文,1992。
5. S. Bishop, “Use of the Streaming Current Detector at Langsett Water-Treatment Works”, Water and Environment, 6(3), pp. 1-9, (1992)
6. 張進興,”應用流導電流偵測技術用於淨水場混凝加藥自動控制之研究”,國立交通大學環境工程研究所碩士論文,1993。
7. H. W. Ching, M. Elimelech and J. G. Hering, “Dynamics of coagulation of clay particles with aluminum sulfate”, Journal of Environmental Engineering, 120(1), pp.169-189, (1994).
8. T. O. Kayode, and J. Gregory , “A new technique for monitoring sludge conditioning”, Water Research, 22(1), pp.85-90, (1988).
9. Photometric Dispersion Analyser PDA2000 Operating Manual, Rank Brothers Ltd.
10. J. Gregory, and D.W. Nelson, “A new optical method for flocculation monitoring”, Solid-Liquid Separation, Ellis Horwood, Chichester, pp. 172–182, (1984).
11. J. Gregory, and W. D. Nelson, “Monitoring of aggregates in flowing suspension”, Colloid and Surfaces., 18, pp.175~188, (1986).
12. J. Eisenlauer, and D. Horn, “Fiber-optic sensor for flocculant dose control in flowing suspension”, Colloid and Surfaces, 14, pp.121~134, (1985).
13. 甘其銓,”淨水場濁度去除效能評估及混凝監測之研究—以豐原淨水場為例”,國立交通大學環境工程研究所碩士論文,新竹(1997)。
14. 吳如雅,”非接觸式光學監測混凝系統技術之發展”,國立中央大學碩士論文,桃園(2008)。
15. 劉倚汎,”以光學影像連續監測銅廢水化學沉降之技術發展”,國立中央大學碩士論文,桃園(2009)。
16. 鄭伯左編著,色彩理論與數位應像,新文京開發出版股份有限公司(2004)。
17. 鄭國裕編著,電腦影像處理,藝風堂出版。
18. M. Elimelech, J. Gregory, X. Jia, and R.A. Williams, “Particle deposition and aggregation-measurement, modeling and simulation”, Elsevier, (1995).
19. 余瑞芳、鄭文伯、朱美玲,“監測廢水中懸浮微粒粒徑分佈之系統與方法”,經濟部智慧財產局,中華民國專利96108076 (2007)。
20. 鄭文伯、高瑜苹、余瑞芳,“利用濁度量測值之變異性來推估膠凝過程膠羽顆粒成長趨勢之系統與方法”,中華民國專利96119832(2007)。
21. 宋慧琴,“眼應用光學基礎”,新文京開發出版股份有限公司,台北(2007)。
22. J. Leentvaar, M. Rebhun, “Strength of ferric hydroxide flocs” , Water Research, 17, pp.895–902, (1983).
23. G.R. Xu, C.S.B. Fitzpatrick, J. Gregory, “Floc formation, size distribution, and its transformation detected by online laser particle counter”, Separation Science and Technology, 43, pp.1725–1736, (2008).
24. C.-J. Chin, S. Yiacoumi, C. Tsouris, S. Relle, S. B. Grant, “Secondary minimum separation of superparamagnetic colloidal particles”, Langmuir, 16, pp.3641–3650, (2000).
25. R.K. Chakraborti, J.F. Atkinson, and J. E. Benschoten, “Characterization of alum floc by image analysis”, Environmental Science & Technology, 34, pp.3969–3976, (2000).
26. R.-F. Yu, H.-W. Chen, W.-P. Chen, M.-L. Chu, “Simultaneously monitoring the particle size distribution, morphology and suspended solids concentration in wastewater applying digital image analysis (DIA) ”, Environmental Monitoring and Assessment, 148, pp.19–26, (2009)
27. 雷一弘、廖述良,“發明專利說明書-水中色度監測儀”,經濟部智慧財產局,台北(1990)。
28. R. L. Droste, “Theory and practice of water and wastewater treatment”, John Wiley & Sons Inc,(1996).
29. J. Gregory, and J. Duan, “Hydrolyzing metal salts as coagulants”, Pure and Applied Chemistry, 73(12), pp. 2017–2026, (2001)
30. P. Jarvis, B. Jefferson, J. Gregory, and S.A. Parsons, “A review of floc strength and breakage”, Water Research, 39(14), pp. 3121-3137, (2005)
指導教授 秦靜如(Ching-Ju Monica Chin) 審核日期 2010-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明