博碩士論文 973206006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.14.244.85
姓名 許琇婷(Hsiu-ting Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究
(Chromium Metal Recovery from Chromium-containing Sludge by Using Thermite Reaction Technology Combined with Hydrometallurgical Approach)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響★ 下水污泥焚化灰渣燒成輕質骨材特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用濕式冶煉法先行萃取電鍍工業設備電解槽底泥中所含之鉻,將其餘重金屬分離,純化成氧化鉻含量較高之產物,再利用鋁熱反應技術回收其中之鉻金屬。研究結果顯示,使用硫酸濃度為6N,鉻電鍍污泥及硫酸之固液比為1:60的條件下,有最佳之鉻溶出率95.34%,還原、鍛燒後可成為氧化鉻含量達82.92wt.%之氧化鉻產物。進行鋁熱反應回收鉻金屬之最佳配比為80克氧化鉻產物混合35.11克鋁屑,即重量百分比2.28:1,有最大放熱溫度2214℃,使氧化鉻產物中之氧化鉻還原為鉻金屬存在於金屬錠中,鉻含量佔金屬錠總重之95.53wt.%,且晶相分析及半定量結果顯示其為金屬鉻,鉻之回收率最高為87.92wt.%,回收後之鉻金屬品位極高,可以投入製程再利用或作為其他用途,減少原物料消耗。
添加淨水污泥進行熔渣改質實驗中,最佳配比為氧化鉻產物:鋁屑:淨水污泥=2.28:1:0.16,即混合鉻電鍍污泥80克混合鋁屑35.11克、淨水污泥5.76克進行共同熔融,能夠改善鋁熱反應過於劇烈之特性,幫助金屬錠與熔渣分離,並且在熔融過程中使Si進入熔渣中,形成Si-O-Si鍵結,將仍存在於熔渣中之有害重金屬穩定化,使其不易溶出於環境中,使之具材料化之潛力。研究結果顯示,熔渣改質實驗最佳配比中出現NaAlSiO4及Na6Al4Si4O17矽酸鹽晶相,重金屬鉻溶出濃度最小為0.35mg/L,耐酸鹼試驗在強酸HNO3、HCl及H2SO4與強鹼NAOH中損失最少。綜合上述結果,濕式冶煉法結合鋁熱熔融處理可將鉻污泥中的金屬回收,同時將剩餘熔渣無害化,且所得熔渣具有材料化之潛力。
摘要(英) Previous research has shown that to retrieve chromium metal from electroplating sludge is feasible and beneficial because the electroplating sludge is abundant in oxides of chromium and lead (i.e., PbCrO4, PbO, Cr3O4, and CrO). This study investigated the feasibility of retrieving pure metallic chromium from the
electroplating sludge with or without sewage sludge, by applying a hydrometallurgical method followed by a thermite process.
Sulfuric acid was chosen to leach the chromium in this study. The tested electroplating sludge consisted of 19.62 wt.% Cr and 54.49 wt.% Pb as the main elements in compositions Sulfuric acid was chosen to leach the Cr from the sludge. In this process, chromium was separated as Cr6+ ion in the leachate from Pb that was precipitated as PbSO4. The Cr6+ in the leachate was further reduced by Na2S2O5 and calcined at 1000℃ to yield the calcined product, the solid of chromium oxide. The retrieved calcined product was identified as Cr2O3. To further retrieve pure metallic chromium from Cr2O3, the calcined product was further processed with aluminum powder to activated thermite reaction between Cr2O3 and Al. This thermite process resulted in the reduction of chromium oxide to metallic chromium by the action of aluminum power, thus pure metallic chromium was retrieved. In the thermite process, sewage sludge, with silicon oxide as main composition, was added as a glass former in order to enhance the separation of metallic chromium from the slag mixture, and to modify the mechanical properties of the resultant slag. The results indicate that 95.34 wt.% leaching rate of chromium was achieved by using a 6N sulfuric acid at a L/S ratio of 6. The Cr6+ in the leachate, after being reduced by Na2S2O5, filtered as principate, and calcined at 1000℃ under atmosphere for 1 hour, yielded a product of 82.92 wt.% chromium oxide. Subsequently, in the thermite process, the stoichiometry of aluminum powder was experimentally determined. It was found that a stoichiometry, Cr2O3: Al powder, of 2.28:1 by weight was optimum to yield a maximum purity of metallic chromium (i.e., 95.53wt.%). The retrieval rate of metallic chromium achieved 92.20wt.% by the thermite process from the calcined product (solid of chromium oxide), or 87.90 wt.% based on the chromium in the starting electroplating sludge. Moreover, the purity of retrieved chromium in the ingot achieved 93.88 wt.%.
On the other hand, in experiments with 5-25 wt.% additions of sewage sludge as a glass former, the ingot yielded from the subsequent thermite process, consisted of 95.56 wt.% chromium in purity. In general, the purity of retrieved metallic chromium increased from with the increased addition of 5-25 wt.% sewage sludge, whereas the retrieval rate was lowered to 71-20wt.%, partially due to an increased partition of metallic chromium to the slag, and partially due to the incomplete thermite reaction at lower reaction temperature caused by the addition of sewage sludge. However, the modified slag showed better results for TCLP and other mechanical property tests. These enhanced properties are supposed to be contributed by the crystalline phases of NaAlSiO4 and Na6Al4Si4O17 present in the slag.
The results of this work suggest that to retrieve metallic chromium from chromium-containing electroplating sludge with or without the addition of sewage sludge, by applying a combination of hydrometallurgical method and a thermite process is feasible and recycling-beneficial.
關鍵字(中) ★ 鋁熱反應
★ 濕式冶煉
★ 鉻回收
★ 資源化
關鍵字(英) ★ Thermite reaction
★ chromium recycling
★ hydrometallurgy
★ resources
論文目次 誌謝i
中文摘要ii
英文摘要iii
目錄v
圖目錄vii
表目錄ix
第一章 前言1
1-1 研究緣起1
1-2 研究目的與內容3
第二章 文獻回顧 5
2-1鉻電鍍污泥產出情形與處理現況 5
2-1-1 台灣電鍍工業現況5
2-1-2含鉻廢液處理及鉻污泥來源5
2-1-3 鉻電鍍污泥性質7
2-1-4資源化技術 7
2-2鋁屑來源10
2-2-1 鋁礦提煉10
2-2-2 金屬鋁錠製造11
2-2-3 台灣鋁工業產業12
2-2-4 資源化成果13
2-3淨水污泥14
2-3-1 淨水污泥來源14
2-3-2 淨水污泥處理現況14
2-4濕式冶煉法16
2-4-1 酸浸漬法16
2-4-2 氨浸法17
2-5鋁熱反應19
2-5-1 鋁熱反應熱力學20
2-5-2 鋁熱反應影響因子24
2-5-3 鋁熱反應於環工領域之運用30
2-6鉻污泥鋁熱熔融技術34
2-6-1 鉻污泥鋁熱熔融技術原理34
2-6-2鋁熱熔融處理鉻污泥操作因子36
2-6-3鋁熱熔融處理效應40
第三章 實驗材料與方法45
3-1 研究架構45
3-2 實驗材料與設備47
3-2-1 實驗材料47
3-2-2 實驗設備48
3-3 實驗條件配置50
3-3-1 原物料基本特性分析50
3-3-2濕式冶煉法萃取鉻氧化物實驗條件配置 51
3-3-3氧化鉻產物鋁熱處理最佳配比實驗配置 54
3-3-4添加淨水污泥鋁熱處理改質熔渣實驗條件配置56
3-4 實驗分析57
3-4-1分析儀器57
3-4-2分析方法58
第四章 結果與討論63
4-1 原物料基本性質63
4-1-1 原物料基本物化性質63
4-1-2 原物料粒徑分布64
4-1-3 原物料化學組成67
4-1-4 原物料熱重熱差分析70
4-1-5 原物料重金屬毒性特性溶出試驗73
4-1-6 原物料掃瞄式電子顯微鏡與X光繞射分析74
4-2 濕式冶煉法萃取鉻氧化物實驗77
4-2-1 酸浸漬鉻污泥之溶出結果77
4-2-2 氧化鉻產物物化特性探討81
4-3 氧化鉻產物鋁熱處理最佳配比實驗83
4-3-1 配比實驗之反應特性探討83
4-3-2 配比實驗之熱重熱差分析86
4-3-3 配比實驗之熔渣物化特性87
4-3-4 配比實驗之金屬錠特性94
4-4添加淨水污泥鋁熱處理改質熔渣實驗99
4-4-1 熔渣改質實驗之反應特性探討99
4-4-2 熔渣改質實驗之熔渣物化特性102
4-4-3 熔渣改質實驗之金屬錠物化特性108
第五章 結論與建議113
5-1結論113
5-2建議116
參考文獻117
參考文獻 1.Amer M., Ibrahim I. A., “Leaching of a low grade Egyptian78 chromite ore,” Hydrometallurgy. No. 43, pp. 307-316 (1996).
2.Ashitani T., Tomoshige R., Oyadomari M., Ueno T., and Sakai K., “Synthesis of Titanium Carbide from Woody Materials by Self-propagating High Temperature Synthesis,” Journal of the Ceramic Society of Japan, Vol. 110, No. 1283, pp. 632-638 (2002).
3.Balakir E. A., Bushuev YU. G., Bareskov N. A., Kosyakin A. E., Kudryavtsev YU. V., Fedorova, O. N., ibid. vol. 11, p. 36 (1975).
4.Barinova T. V., Borovinskaya I. P., Ratnikov V. I., Ignatjeva T. I., and Zakorzhevsky V. V., “SHS of Mineral-Like Ceramics for Consolidation of Radioactive Wastes,” Proceedings of the 5th International Symposium on Self-Propagating High Temperature Synthesis SHS-99, Moscow, Russia (1999).
5.Chernenko E. V., Afanaseva L. F., Lebedeva V. A., Rozeband V. I., ibid, 24, p. 639, (1988).
6.Chen W. W., Wang P. L., Chen D. Y., Zhang B. L., Jiang J. X., Cheng Y. B. , and Yan D. S., “Synthesis of (Ca,Mg)-sialon from Slag by Self-propagating High-temperature Synthesis,” Journal of Materials Chemistry, Vol. 12, No. 4 , pp. 1199-1202 (2002).
7.Cincotti A.., Orrù R., Pisu M., and Cao G., “Self-Propagating Reactions for Environmental Protection: Reactor Engineering Aspects,” Ind. Eng. Chem. Res., Vol. 40, Issue. 23, pp. 5291-5299 (2001).
8.Dr. Andrew Perchard, Alcan Aluminium UK., and Courtesy of Glasgow University Archives. http://www.aluminiumville.co.uk/bapro.html/ (2007).
9.Dubrovin A. S., Kuznetsov, Slepova L. V., Kuznetsov V. L., “Combust. Explos. Shock Waves,” Engl. Transl. ,Vol. 6, p. 60(1970).
10.Durães L., Brito P., Campos J., Portugal A., in: Marquardt W., Pantelides C. (Eds.), “Proceedings of the 16th European Symposium on Computer Aided Process Engineering and Proceedings of the 9th International Symposium on Process Systems Engineering,” 21A of Comp. Aided Chem. Eng., Elsevier, Amsterdam, pp. 365-370 (2006).
11.Ecke H., Sakanakura H., Matsuto T., Tanaka N., Lagerkvist A., “State-of-the-art Treatment Processes for Municipal Solid Waste Incineration Residues in Japan,” Waste Management. Res., 18, pp. 41-51 (2000).
12.Giovanni T., Domenico P., and Roverto P., “Low and Non-waste Technologies for Metals Recovery by Reactive Polymers,” Waste Management, Vol. 16, No. 7, pp. 597-605 (1996).
13.Jiang J. X., Wang P. L., Chen W. W., Zhuang H. R., Cheng Y. B., and Yan D. S., “Phase Assemblages of (Ca,Mg)-α-sialon Ceramics Derived from an α-sialon Powder Prepared by SHS,” Journal of European Ceramic Society, Vol. 23, pp. 2342-2349 (2003).
14.Kallio M., Ruuskanen P., Maki J., Poylio E., and Lahteenmaki S., “Use of The Aluminothermic Reaction in the Treatment of Steel Industry By-products,” Journal of Materials Synthesis and Processing, Vol. 8, No. 2, pp. 87-92 (2000).
15.Kubaschewski O., Alcock C. B., “Metallurgical Thermochemistry,” Oxford, New York, Pergamom Press, 5th ed, rev. and enl.(1979).
16.Kubaschewski O., Alcock, C. B., and Spencer P. J., “Materials Thermochemistry,” London, U.K., Pergamon Press, 6th ed(1993).
17.Lee H. H., Sohn J. G., Lee J. Y., Kim D. Y., “Fabrication of Cr2O3 Powder from Waste MgO-Cr Refractory,” The 6th International Symposium on East Asian Resources RecyclingTechnology Proceedings, pp. 357-361 (2001).
18.Li C. T., Lee W. J., Huang K. L., Hu S. F., and Lai Y. C., “Vitrification of Cromium Electroplating Sludge,” Environ. Sci. Technol., Vol. 41, No. 8, pp. 2950-2956 (2007).
19.Lu X., Guo Z. M., Luo S. G., Lin T., Yin S., Yang J. W., “Self-propagating High Temperature Synthesis of Radioactive Waste Immobilization,” Journal of the Chinese Ceramic Society, Vol. 31, No. 2, pp. 205-208 (2003).
20.Macchi G., Pagano M., Pettine M., Santori M., Tiravanti G., “A Bench Study on Chromium Recovery from Tannery Sludge,” Wat. Res., Vol. 25, No. 8, pp. 1019-1026 (1991).
21.Matthew G. James, James K. Beattie, and Brendan J. Kennedy, “Recovery of Chromate from Electroplating Sludge,” Waste Manage res., Vol. 18, pp.380-285 (2000).
22.Merzhanov A. G., “History and Recent Developments in SHS,” Ceramics International, Vol. 21, Issue. 5, pp. 371-379 (1995).
23.Mei J., Halldearn R. D., and Xia P. “Mechanisms of The Aluminium-iron Oxide Thermite Reaction ,” Scripta Mater., Vol. 41, No. 5, pp. 541-548 (1999).
24.Murakami T., Ishida T., Sasabe K., Sasaki, K., and Harada S., “Characteristics of Melting Process for Sewage Sludge,” Water Science and Technology, Vol. 23, No. 10/12, pp. 2019-2028, (1991a).
25.Murakami T., Sasabe K., and Kawashima T., “Estimation of Energy Saving for Melting Process on Sewage Sludge,” Water Science and Technology, Vol. 23, No. 10/12, pp. 2011-2018 (1991b).
26.Merzhanov A. G., Yukhvid V. L., Borovinskaya I. P., Dokl. Acad. Sci. USSR, Chem, Vol. 255, p. 503 (1980).
27.Marvin J. Udy, “Chromium,” New York, Reinhold Pub. Corp. (1956).
28.Muthuraman M., Arul Dhas N., and Patli K. C., “Combustion Synthesis of Oxide Material for Nuclear Waste Immobilization,” Bull. Mater. Sci., Vol. 17, No. 6, p. 977 (1994).
29.Matsunaga and Masahiro, “Method and Aapparatus for Treating a Waste Substance Using a Thermite Reaction,” U.S. patent, No. 6225519, Appl. No. 211306 (2001).
30.Ohnishi T., Harada H., Kume S., Nakagawa H., Miyatake K., and Miyanami K., “Metal Recovery from Electroplating Sludge by Using Thermite Reaction with Aluminum in Aluminum Dross Wastes,” Journal of Japan Institute of Light Metals, Vol. 51, No. 3, pp. 188-194 (2001).
31.Orrù R., Sannia M., Cincotti A., Cao G., “Treatment and Recycling of Zinc Hydrometallurgical Wastes by Self-propagating Reactions,” Chemical Engineering Science, Vol. 54, Issue. 15-16, pp. 3053-3061 (1999).
32.Orrù R., Sannia M.,Cincotti A., Cao G., “On the Mechanism of Structure and Product Formation in Self-Propagating Thermite Reactions,” International Journal of Self-Propagating High-Temperature Synthesis, Vol. 6, No. 1 (1997).
33.Pashkeev I. Yu., Senin A. V., Drozdov V. V., Studenikin G. V., and Dzekun E. G., “High-temperature Synthesis of Metal-ceramic Matrices for Immobilizing High-level Radioactive wastes,” Atomnaya Energiya, Vol. 83, No. 6, pp. 437-446 (1997).
34.Pashkeev I. Yu., Levakov E. V., Gavnilov P. I., Glagovskij E. M., and Kuprin A. V., “Self-propagating High Temperature Synthesis of Zirkonolite-base Composite Matrials for Nuclear Wastes Immobilization,” Fizikai Khimiya Obrabotki Materualov, No. 5, pp. 58-63 (2001).
35.Pellant C.著,朱靜江譯, “Rock and Minerals,” 1st Ed, 7th Printing, Owl Publishing House (1999).
36.Renard D. R., “Metal Recovery from Leached Plating Sludge,” Plating and surface Finishing, pp. 46-48 (1987).
37.Silva J. E., Soares D., Paiva A. P., Labrincha J. A., Castro F., “Leaching Behavior of a Galvanic Sludge in Sulphuric Acid and Ammoniacal Media,” Journal of Hazardous Materials, pp. 195-202 (2005).
38.Spector M. L., Suriani E. and Stukenbroeker G. L., “Thermite Process for Fixation of High Level Radioactive Wastes,” I&EC Process Design and Development, Vol. 7, No. 1, pp. 117-122 (1968).
39.Tomoshige R., Ashitani T., Yatsukawa H., Nagase R., Kato A., and Sakai K., “Synthesis of Ceramic Compounds Utilizing Woody Waste Materials and Rice Husk,” Materials Science Forum, Vol. 437-438, pp. 411-414 (2003).
40.Tanaka T. et al., “Demonstration of a Multi-purpose Incineration Melter System,” ANS International Topical Meeting (1986).
41.Vogel W., “Chemistry of Glass,” Am. Ceram Soc., p.38 (1985).
42.Xanthopoulou G. and Vekinis G., “An Overview of Some Environmental Applications of Self-propagating High-Temperature Synthesis,” Advances in Environmental Research, Vol. 5, Issue. 2, pp. 117-128 (2001).
43.王雙喜、梁開明、張獻輝,顧守仁無機材料學報,vol. 17,No. 5(2002)。
44.朱志弘,「Thermite反應熔融處理都市垃圾焚化飛灰之研究」,碩士論文,國立中央大學環境工程研究所,中壢市(2004)。
45.行政院環保署訓練所,「毒性污染物質處理-廢水處理專責人員訓練教材」,行政院環境保護署環境保護人員訓練所,初版二刷,中壢市(2008)。
46.村上忠弘、石田貴榮、鈴木和美、角田幸二,「污泥熔に係ゐ指標の檢討」,下水道協會誌,Vol. 2,No. 300,pp. 32-46(1985)。
47.村上忠弘、石田貴榮,「污泥熔融に係ゐ指標の檢討」,下水道協會誌,Vol. 26,No. 300(1989)。
48.村上定瞭、竹內正美,“Ash Melting and Solidification with Used Aluminium Cans”,由宇部工業高等専門學校物質工學科,網址:http://www.ube-k.ac.jp/~volnteer/MT_Lab/photo_gbg/melt.htm,網頁更新日期: 1997年3月22日,網頁擷取日期:2003年7月1日。
49.李嘉宜,「.電鍍污泥回收鉻金屬之研究」,碩士論文.,國立臺灣大學環境工程研究所,台北市(1995)。
50.李宗哲,「利用廢矽晶片與焦炭製備碳化矽之精密陶瓷及利用電弧法與加熱法製備奈米管材的探討」,碩士論文,國立中正大學化學工程研究所,嘉義縣(2002)。
51.呂慶慧,王壬,楊維鈞,「回收電鍍污泥中有價金屬之研究」,第十屆廢棄物處理技術研討會論文集,第166-169頁(1995)。
52.呂學俊,「礦物科學」,中國文化大學出版部,第293頁(1988)。
53.呂俊芳,延安大學學報:自然科學版,第3期,第19卷(2000)。
54.何春松,「灰渣熔融技術之發展」,國立台灣大學台大工程學刊,第84期(2002)。
55.阮江溥,「廢棄物衍生Thermite熔融劑之研究」,碩士論文,國立中央大學環境工程研究所,中壢市(2005)。
56.周俊志,「廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究」,碩士論文,國立中央大學環境工程研究所,中壢市(2007)。
57.官建承、張文凱、林凱隆,「焚化飛灰與下水污泥灰之共熔熔渣作為營建資材化研究」,第十屆資源與環境學術研討會論文集,第161-172頁(2008)。
58.倪文、李建平、方興、陳德平、陳那那,「礦物材料學導論」,科學出版社, 第33-34頁,北京市(1998)。
59.株式會社ハイネット,「自燃性焼卻灰の製造方法」,網址:http://www.t3.rim.or.jp/~yo01-pat/04801401.html,網頁更新日期: 1996年6月28日,網頁擷取日期:2003年7月1日。
60.株式會社オーエスユー(OSU),「燃燒合成」,網址:http://www.osu-japan.com/OSUFiles/Nenshogosei.html,網頁擷取日期:2004年4月13日。
61.許樹恩、陳崇一、陳新仁,「自發反應合成」,陶瓷技術手冊(上),第181-187頁(1994)。
62.郭淑玲,「皮革廢棄物焚化過程中添加物對Cr回收之影響」,碩士論文,國立臺灣大學環境工程研究所,台北市(2000)。
63.張祖恩、魏玉麟、王鴻博、許琦、黃沐域,「焚化灰渣物化特性及其溶出毒性之調查研究」,第十四屆廢棄物處理技術研討會論文集,第20-23頁(1999)。
64.張啟達,「重金屬污泥資源化管道與技術評析」,經濟部工業局工安環保報導期刊第二十九期(2005)。
65.張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢市(1991)。
66.張毓寬,「鉻污泥資源化基礎研究」,碩士論文,國立成功大學資源工程研究所,台南市(2002)。
67.曾博榆,「都市垃圾焚化灰渣調質熔渣取代部份水泥之研究」,碩士論文,國立中央大學環境工程學研究所,中壢市(2002)。
68.黃心亮,「鉻鋅電鍍污泥熱處理之研究」,碩士論文,東海大學環境工程與科學研究所,台中市(2000)。
69.黃明政、鄭大偉、曾錦清、邱文通、楊昇府,「焚化灰渣熔融製成黑色微晶材料之資源化研究」,第二十屆廢棄物處理技術研討會,第362頁,中壢市(2005)。
70.詹炯淵,「垃圾焚化飛灰管理對策之研究」,碩士論文,國立台灣大學環境工程學研所,台北市(2001)。
71.楊敏鑫,「廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究」,碩士論文,國立中央大學環境工程研究所,中壢市(2006)。
72.經濟部工業局,「電鍍業資源化應用技術手冊」,(2002)。
73.廖錦聰、馬文松,「鉻污泥無害化處理」,中華民國專利,專利證號:044928,民國80年2月1日公告。
74.鄭世智,「再結晶與磁選程序對垃圾熔渣之影響研究」,碩士論文,國立中央大學環境工程學研究所,中壢市(2006)。
75.鍾宇翔,「廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究」,碩士論文,國立中央大學環境工程研究所,中壢市(2006)。
指導教授 王鯤生(Kuen-sheng Wang) 審核日期 2010-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明