參考文獻 |
1. S.Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp.56 (1991).
2. 李元堯,「21世紀的尖端材料-奈米碳管」,化工技術,第11卷第2期,第140-159頁,2003。
3. 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷第1期,第23-30頁,2002。
4. 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,中正大學化學工程研究所,嘉義,2002。
5. 化工產業技術知識網: http://www.chemtech.com.tw
6. 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2期,第18至25頁,2003。
7. J.M. Lambert, P.M. Ajayan, P. Bernier, J.M. Planeix, V. Brotons, B. Coq, and J. Castaing,“ Improving conditions towards isolating single-shell carbon nanotubes,“ Chemical Physics Letters, 226(3–4), pp.364–371 (1994).
8. Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo,M. Terrones, and M.S. Dresselhaus,“ Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment.,“ Chemical Physics Letters, 398(1–3), pp.87–92 (2004).
9. M. Yudasaka, H. Kataura, T. Ichihashi, L.C. Qin, S. Kar, and S. Iijima,“ Diameter enlargement of HiPco single-wall carbon nanotubes by heat treatment,“ Nano Letter, 1(9), pp.487–489 (2001).
10. M. Yudasaka, T. Ichihashi, D. Kasuya, H. Kataura, and S. Iijima,“ Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment,“ Carbon ,41(6), pp.1273–1280 (2003).
11. P.X. Hou, C. Liu, and H.M. Cheng,“ Purification of carbon nanotubes,” Carbon ,46 ,pp.2003–2025 (2008).
12. P. M. Ajayan, T. W. Ebbesen, T Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura,“ Opening carbon nanotubes with oxygen and implications for filling,” Nature, 362(6420), pp.522–525 (1993).
13. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki,“ Purification of nanotubes,“ Nature , 367(6463), pp.519–9 (1994).
14. D. Zhang, L. Shi, J. Fang, X. Li, and K. Dai,” Preparation and modification of carbon nanotubes,” Materials Letters, 59, pp.4044 – 4047 (2005).
15. F. Avile´s, J.V. Cauich-Rodrı´guez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado,” Evaluation of mild acid oxidation treatments for MWCNT Functionalization,” Carbon, 47, pp.2970-2975(2009).
16. C. Lu, F. Su, and S. Hu,” Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions,” Applied Surface Science, 254, pp.7035–7041 (2008).
17. C. Lu and H. Chiu,” Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution,” Chemical Engineering Journal, 139, pp. 462–468 (2008).
18. 譚仁豪,〝微波化學程序改質之奈米碳管吸附水中鉻離子之研究〞,國立雲林科技大學環境與安全衛生工程系碩士論文,2008。
19. O.K. Park,T. Jeevananda, N. H. Kim, S.I. Kim, and J.H. Lee,” Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites,” Scripta Materialia, 60, pp.551–554 (2009).
20. 工業污染防治技術手冊-有機溶劑污染控制,1995。
21. P.C. Hiemenz and Raj Rajagopalan, “ Principles of Colloid and Surface Chemistry,“3nd ed, Marcel Dekker, Inc. , New York, pp.405-407, pp.411-412 (1997).
22. Faust and Samuel Denton,“Adsorption Process for Water Treatment Samuel D.”Faust and Osman M. Aly, Boston Butterworth, pp.16-22, pp.185-191 (1987).
23. 劉明翰,「粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立」,國立中山大學環境工程研究所論文,2001。
24. 林哲仁,「活性碳之評估與選擇」,環境工程會刊,第六卷第一期,第23-24頁,1995。
25. 劉曾旭,「活性碳製造技術及應用」,產業調查與技術 第一二七期,第84-88頁,1999。
26. L.Li, P.A. Quinlivan, and D.R.U. Knppe, “ Effect of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution,“ Carbon, 40, pp.2085-2100 (2002).
27. 邱煥宗,“奈米碳管吸附水中二價鋅離子之研究”,國立中興大學環境工程研究所碩士論文,2005。
28. Y.H. Li, S. Wang, Z. Luan, J.Ding, C. Xu,, and D. Wu,“ Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062, (2003).
29. F. Su, C. Lu, and S. Hu, “ Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes,” Colloids and Surfaces A: Physicochemical Engineering Aspects 353, pp.83–91 (2010)
30. C.Y. Kuo and H.Y. Lin, “ Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment,” Desalination, 249, pp. 792–796 (2009).
31. S.Gotovac, H.Honda, Y.Hattori, K.Takahashi, H.Kanoh, and K.Kaneko, ” Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons,” Nano Letters,7, pp. 583–587 (2007).
32. J. Zhang, J.K. Lee, Y. Wu, and R. W. Murray, ” Photoluminescene
and electronic interaction of anthracene derivatives adsorbed
onsidewalls of single-walled carbon nanotubes,” Nano Letter, 3, pp.403–407 (2003).
33. Z. Wang, C. Liu, Z. Liu, H. Xiang, Z. Li, and Q. Gong,“ π-πinteraction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites,” Chemical Physics Letters, 407, pp.35–39.(2005).
34. Y.Zhang, S.Yuan, W.Zhou, J.Xu, and Y.Li,” Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes,” Journal of Nanoscience and Nanotechnology, 7, pp.2366–2375 (2007).
35. F. Tournus, S. Latil, M. I. Heggie, and J.C. Charlier,” π-stacking
interaction between carbon nanotubes and organic molecules,”
Physical Review B, 72, pp.75431 (2005).
36. L. M. Woods, Ş. C. Bădescu, and T. L. Reinecke,” Adsorption of simple
benzene derivatives on carbon nanotubes,” Physical. Review B,
75 (1-9), 155415 (2007).
37. A. Star,T.R. Han, J.C.P. Gabriel, K. Bradley, and G. Gru,” Interaction of aromatic compounds with carbon nanotubes:correlation to the Hammett parapeter of the substituent and measured carbon nanotube FET response, ” Nano Letter, 3, pp.1421–1423 (2003).
38. D. Lin and B. Xing,” Adsorption of Phenolic Compounds
by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups,” Environmental Science Technology, 42, pp.7254–7259 (2008).
39. C. Lu, Y.L. Chung, and K.F. Chang,“ Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, 39, pp.1183–1189 (2005).
40. M. A. Salam and R.C. Burk, “ Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes,” Applied Surface Science, 255, pp.1975–1981 (2008).
41. 鍾孟佳,「奈米碳管吸附水中腐植酸之研究」,國立中興大學環境工程研究所碩士論文,2005。
42. Y.J. Yao, F.F Xu, M. Chen, Z.X Xu, and Z.W Zhu,“Adsorption behavior of methylene blue on carbon nanotubes,” Bioresource Technology, 101, pp.3040–3046 (2010).
43. G.C. Chen, X.Q Shan, Y.Q Zhou, X.E Shen, H.L. Huang, and S. U. Khan,“Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes,” Journal of Hazardous Materials, 169, pp.912–918 (2009).
44. M. Mokhtar, M.A. Salam, S.N. Basahel, S.A. Al-Thabaiti, and A.Y. Obaid,“Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies,” Journal of Alloys and Compounds, 500, pp.87–92(2010).
45. C.A. Staples, P.B.Dom, G.M. Klecka, and S.T. O’Blook,” A review of the environmental fate, effects, and exposures of bisphenol A,“Chemosphere, 36, pp.2149–2173 (1998).
46. T.Yamamoto and A.Yasuhara, “ Quantities of bisphenol a leached from plastic waste samples,” Chemosphere, 38, pp.2569-2576 (1999).
47. J.Sajikia, K.Takahashia, and J.Yonekubo, “ Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography,” Journal of Chromatogrphy B, 736, pp.255-261 (1999).
48. 行政院環境保署環境檢驗所,「環境荷爾蒙-雙酚A」,第43期,2002。
49. A.V. Krishnan, P. Stathis, S.F. Permuth, L.Tokes, and D.Feldman, “ Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving,” Endocrinology, 132, pp.2279-2286 (1993).
50. 行政院衛生署,「藥物食品安全周報」,第123期,2008。
51. 陳福安,行政院環境保護署九十三年度科技專案研究計畫,「環境荷爾蒙調查研究(3/3)」,大仁技術學院,2004。
52. J.Zhao, Y.Li, C.Zhang, Q.Zeng, and Q. Zhou,” Sorption and degradation of bisphenol A by aerobic activated sludge,” Journal of Hazardous Materials, 155, pp.305–311 (2008).
53. G.Liu, J.Ma, X.Li , and Q.Qin,“ Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments,” Journal of Hazardous Materials, 164, pp. 1275–1280 (2009).
54. B.Z. Dong, L. Wang, N.Y. Gao, “ The removal of bisphenol A by ultrafiltration,” Desalination, 221, pp.312–317 (2008).
55. Y. Zhang, C. Causserand, P. Aimar, and J.P. Cravedi,” Removal of bisphenol A by a nanofiltration membrane in view of drinking water production,” Water Research, 40, pp.3793–3799 (2006).
56. Y.H. Li, S.Wang, J.Wei, X.Zhang, C.Xu,H.Luan, D.Wu, and B.Wei, “ Lead adsorption on carbon nanotubes,” Chemical Physics Letters, 357, pp.263-266 (2002).
57. Y.H. Li, S.Wang, Z.Luan, and J. Ding, C.Xu,“ Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
58. J. Barkauskas and F.S. Cannon, “ Potentimetric titrations : characterize
functional groups and adsorbed species on activated carbon,” http://
www.chf.vu.lt/CWN/C03_PT.pdf
59. Y. EI-Sayed and T. J. Bandosz, “ Effect of increased basicity of
activated carbon surface on valeric acid adsorption from aqueous solution
activated carbon,” Chemical Physics Letters, 5, pp.4892-4898 (2003).
60. H. L. Chiang, C. P. Huang, and P. C. Chiang, “ The surface characteristics
of activated carbon as affected by ozone and alkaline treatment,”
Chemosphere, 47, pp.257-265 (2002).
61. C.He, S.Song, J.Liu, V.Maragou, and P.Tsiakaras,” KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction,” Journal of Power Sources, 195, pp.7409–7414 (2010).
62. 陳建宏,「改質多層奈米碳管儲氫之研究」,國立雲林科技大學工程科技研究所博士班畢業論文,2008。
63. R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, and S.T. Mostafavi, “ Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions,” Applied Surface Science, 256, pp.4447–4455 (2010).
64. I. Bautista-Toledo, M.A. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno-Cadtilla, and F.J. Vegas Fernandez, “Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry,” Environmental Science Technology, 39, pp.6246-6250 (2005).
|