博碩士論文 943406007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.141.19.105
姓名 王厚傳(Hou-Chuan Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以過渡金屬氧化物觸媒與臭氧分解氯苯及戴奧辛之研究
(Catalytic Oxidation of Chlorobenzene and PCDD/Fs with Ozone over Transition Metal Oxides)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的是開發低溫(<200 °C)、高效、便宜的氣相氯苯及戴奧辛分解技術,採用結合臭氧與過渡金屬氧化物觸媒(如:氧化鐵或氧化錳)方式(簡稱臭氧觸媒氧化法),於60-200 °C進行氣相氯苯及戴奧辛氧化分解之測試,分別探討反應溫度、臭氧添加濃度、空間速度、含水率等操作因子對轉化率的影響,再者,對於觸媒反應的動力學探討、觸媒長效性及產物分析等也將進行瞭解。
首先,以戴奧辛前驅物(氯苯)作為測試對象,實驗結果顯示:氯苯於200 °C、20% O2時,氧化鐵觸媒對氯苯的轉化率非常低(<5%),然而,添加1,200 ppm臭氧於氧化鐵觸媒,只需150 °C、極短的滯留時間(300,000 h-1),即有90%以上的氯苯轉化率;一氧化碳及二氧化碳是唯一可偵測到的氣相含碳反應產物,反應生成的一氧化碳、二氧化碳濃度與碳回收率皆隨臭氧添加量的增加而遞增。長效測試結果顯示:氧化鐵觸媒對氯苯的轉化率能保持96小時以上的穩定性,然而,氧化錳的轉化活性卻呈現些微下降(3%),其原因可能是反應生成的中間產物沉積於觸媒表面;其次,氧化錳觸媒會與氯離子生成MnCl2導致觸媒失活。使用後的氧化錳觸媒可於20%氧氣、400 °C下進行加熱再生。動力實驗結果顯示:以Langmuir-Hinshelwood 模式能合理解釋臭氧觸媒分解氯苯的反應行為,臭氧於觸媒表面分解生成的原子氧物質,是低溫氧化氯苯之重要氧化劑。於20%O2時,氧化鐵分解氯苯的活化能為43 kJ mol-1,添加O3後,反應的活化能明顯降至17 kJ mol-1。顯示添加臭氧不僅能有效降低觸媒分解氯苯的反應溫度,還能降低反應之活化能。
第二部份是探討臭氧觸媒氧化法對氣相戴奧辛的去除,結果顯示:添加100 ppm臭氧於氧化鐵觸媒,180 °C時、戴奧辛的分解率可達90%以上。再者,針對17種不同的戴奧辛同分異構物進行分析,在不含臭氧、120 °C時,各種異構物的分解率皆低於20%,顯示大部份只吸附於觸媒表面,當添加臭氧後,於180 °C,各種異構物的分解率皆高於80%。最後,適量的水氣有助於分解氣相戴奧辛,於150 °C、5%含水量時、戴奧辛分解率達90%,其原因可能是含水氣時,會生成高反應性的OH自由基,另外,也可移除觸媒表面的氯離子。
綜觀來說,臭氧觸媒氧化法使用的是綠色、便宜的環保觸媒材料,配合少量臭氧的添加即能低溫、高效分解氣相氯苯及戴奧辛,於實廠應用,可直接安裝於集塵機或洗滌塔之出口。
摘要(英) This dissertation describes a quest to develop a low-temperature (<200 °C), cost-effective, and energy-saving technology for the destruction of chlorobenzene (CB) and dioxins [polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs)]. The catalytic oxidation of gaseous CB and PCDD/Fs with ozone [O3 catalytic oxidation (OZCO)] over transition metal oxides (iron oxide and manganese oxide) was investigated at temperatures of 60–210 °C, while monitoring the effects of operating temperature, O3 concentration, space velocity (SV), and water vapor content on conversion. Moreover, the catalyst stability and the kinetics of the conversion processes were also studied.
CB was tested initially as a model dioxin compound to evaluate the oxidation behavior. Substituting O3 for O2 during the course of catalytic oxidation of CB decreased both the operating temperature and the activation energy. In the absence of O3, the iron oxide and manganese oxide catalysts were almost inactive toward CB oxidation at temperatures up to 200 °C in 20% of O2. In contrast, high conversions of CB (ca. 90%) were obtained in the presence of 1,200 ppm of O3 at a relatively low temperature (150 °C) and a short gas residence time (GHSV = 300,000 h–1). CO and CO2 were the only carbon-containing products detected in the effluent gas stream; their concentrations and the carbon recovery all increased upon increasing the concentration of O3 from 0 to 1,200 ppm. The iron oxide catalyst provided a stable conversion during testing for more than 96 h. In contrast, a 3% reduction of the CB conversion occurred over manganese oxide and O3 because (i) small amounts of partially oxidized byproducts (e.g., carboxylic acids) deposited on the surface of the catalyst and (ii) deactivating MnCl2 species were formed during the oxidation process. Complete regeneration of the manganese oxide catalyst was possible at temperatures higher than 400 °C in 20% of O2. The Langmuir–Hinshelwood model adequately described the kinetic behavior for the oxidation of CB over iron oxide and O3, suggesting that the atomic oxygen species that formed on the surfaces of the catalyst upon the decomposition of O3 played important roles in the catalytic oxidation of CB.
In the second part of this study, total oxidation of gaseous PCDD/Fs was investigated using the OZCO process. The addition of O3 greatly enhanced the catalytic activity of the iron oxide catalyst toward the oxidation of gaseous PCDD/Fs. At 180 °C, the destruction efficiencies of gaseous PCDD/Fs over iron oxide and 100 ppm O3 exceeded 90%. At a relatively low temperature of 120 °C and in the absence of O3, the destruction efficiencies of all PCDD/F congeners were less than 20% and decreased upon increasing the degree of chlorination of the dioxin congener. At 180 °C in the presence of O3, however, the destruction efficiencies were greater than 80% for all of the PCDD/F congeners over iron oxide. Moreover, in the presence of 5% water vapor, the destruction efficiencies of PCDD/Fs were greater than 90%, even at a relatively low operating temperature of 150 °C. Thus, the presence of an appropriate amount of water vapor enhanced the catalytic activity for the decomposition of gas-phase PCDD/Fs, presumably because (i) highly reactive OH radicals were formed to oxidize PCDD/Fs and (ii) water vapor facilitated the removal of Cl– ions from the catalyst surfaces.
Overall, this OZCO method—using eco-friendly, cost-effective iron oxide and manganese oxide catalysts and small amounts of O3—is a novel, feasible, and economical approach for the removal of low-concentrations of CB and dioxins from gas streams. It can be employed directly to treat the flue gas at the outlet of a baghouse or scrubber in field application.
關鍵字(中) ★ 轉化率
★ 臭氧觸媒氧化
★ 低溫氧化
★ 戴奧辛
★ 氯苯
★ 氧化錳
★ 氧化鐵
關鍵字(英) ★ Chlorobenzene
★ Manganese oxide
★ Iron oxide
★ PCDD/F
★ Low-temperature oxidation
★ Ozone catalytic oxidation (OZCO)
★ Conversion
論文目次 Abstract i
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Objectives and Scope 2
Chapter 2 Literature Review 5
2.1 Properties of Chlorobenzene and Dioxins 5
2.1.1 Properties of Chlorobenzene 5
2.1.2 The Structures and Properties of Dioxins 5
2.2 Dioxin Sources and Formation 10
2.3 Dioxin Emission Limits 15
2.4 Traditional Control Techniques for CB and Dioxin
Removal 16
2.5 Catalytic Oxidation 19
2.5.1 Catalytic Oxidation of Chlorobenzene 19
2.5.2 Catalytic Oxidation of Dioxins 23
2.6 Fundamental of Ozone-Catalytic Oxidation 24
2.6.1 Ozone Properties and Reactions 24
2.6.2 Catalytic Ozone Decomposition 26
2.6.3 Ozone Catalytic Oxidation 28
2.7 Kinetic Analysis 31
2.7.1 Kinetic Models of Catalytic Reactions 31
2.7.2 Activation Energy 33
2.7.3 Reaction Mechanism of Catalytic Oxidation of
Chlorobenzene 35
Chapter 3 Experimental Methods 36
3.1 Catalyst Screening 36
3.2 Catalyst Preparation 37
3.3 Catalyst Characterization 37
3.4 Reactivity Measurement 38
3.4.1 Catalytic Ozone Decomposition 38
3.4.2 Chlorobenzene Oxidation 39
3.4.3 Dioxin Oxidation 45
Chapter 4 Results and Discussion 50
4.1 Characterization of Catalysts 50
4.2 Ozone Decomposition 55
4.2.1 Thermal Decomposition of Ozone 55
4.2.2 Catalytic Ozone Decomposition 56
4.2.3 Oxygen Species during Catalytic Ozone
Decomposition 57
4.3 Chlorobenzene Oxidation 60
4.3.1 Comparison of Activities for Chlorobenzene
Oxidation 60
4.3.2 Effect of Ozone Concentration on CB Conversion
and Product Analysis 67
4.3.3 Effect of Space Velocity 70
4.3.4 Catalyst Stability 71
4.3.5 Catalyst Regeneration 76
4.3.6 Kinetic Analysis of CB Oxidation 78
4.3.7 Activation Energy of CB Oxidation 99
4.3.8 Reaction Mechanism of Ozone-Catalytic Oxidation
of CB 101
4.3.9 Economic Evaluation 102
4.4 Dioxin Oxidation 104
4.4.1 Removal Behavior of PCDD/Fs at Different Modes
104
4.4.2 Comparison of Removal and Destruction
Efficiencies of PCDD/F Congeners 107
4.4.3 Effect of Catalyst Structure on the Catalytic
Destruction of PCDD/F 114
4.4.4 Effect of Ozone Concentration on the
Decomposition of PCDD/F 115
4.4.5 Effect of Space Velocity 117
4.4.6 Effect of Water Vapor on the Decomposition of
PCDD/F 118
4.4.7 Reaction Mechanism of Dioxin Oxidation in OZCO
Reaction 121
Chapter 5 Conclusions and Perspectives 123
5.1 Conclusions 123
5.2 Perspectives 125
References 126
Appendix 136
參考文獻 Almquist, C. B., Sahle-demessie, E., Sehker, S. C. and Sowash, J., Methanol oxidation using ozone on Titania-supported vanadia catalyst, Environ. Sci. Technol., 41, 4754-4760 (2007).
Bandara, J., Mielczarski, J. A. and Kiwi, J., Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy, Appl. Catal. B: Environ., 34, 307-320 (2009).
Bastos, S. S. T., Orfao, J. J. M., Freitas, M. M. A., Pereira, M. F. R. and Figueiredo, J. L., Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol, Appl. Catal. B: Environ., 93, 30-37 (2009).
Becker, L. and Forster, H., Oxidative decomposition of chlorobenzene catalyzed by palladium- containing zeolite Y, J. Catal., 170, 200-203 (1997).
Beltran, F. J., Rivas, F. J. and Montero-de-Espinosa, R., Iron type catalysts for the ozonation of ozalic acid in water, Water Research, 39, 3553-3564 (2005).
Bertinchamps, F., Attianese, A., Mestdagh, M. M. and Gaigneaux, E. M., Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene, Catal. Today, 112, 165-168 (2006).
Bertinchamps, F., Gregoire, C. and Gaigneaux, E. M., Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics Part I: Identification of the optimal main active phases and supports, Appl. Catal. B: Environ., 66, 1-9 (2006).
Bertinchamps, F., Gregoire, C. and Gaigneaux, E. M., Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics Part II: Influence of the nature and addition protocol of secondary phases to VOx/TiO2, Appl. Catal. B: Environ., 66, 10-22 (2006).
Bielanski, A. and Haber, J., Oxygen in catalysis on transition metal oxides, Catal. Rev. Sci. Eng., 19, 1-41 (1979).
Brubaker, Jr., W. W., and Hites, R. A., OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans, J. Phys. Chem. A, 102, 915-921 (1998).
Buekens, A. and Huang, H., Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration, J. Hazard. Mater., 62, 1-33 (1998).
Bulanin, K. M., Lavalley, J. C., and Tsyganenko, A. A., IR spectra of adsorbed ozone, Colloid Surf. A, 101, 153-158 (1995).
Chang, M. B. and Lin, J. J., Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere, 45, 1151-1157 (2001).
Chang, M. B., Cheng, Y. C. and Chi, K. H., Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes, Sci. Total Environ., 366, 456-465 (2006).
Chang, M. B., Chi, K. H., Chang, S. H., and Yeh, J. W., Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant, Chemosphere, 66, 1114-1122 (2007).
Chang, M. B., Lin, J. J., Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan, Chemosphere, 45, 1151-1157 (2001).
Chang, S. H., Yeh, J. W., Chein, H. M., Hsu, L. Y., Chi, K. H. and Chang, M. B., PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon, Environ. Sci. Technol., 42, 5727-5733 (2008).
Chen, H. L., Lee, H. M. and Chang, M. B., Enhancement of energy yield for ozone production via packed-bed reactors, Ozone Sci. Eng., 28, 111-118 (2006).
Chen, H., Sayari, A., Adnot, A., Larachi, F., Composition–activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation, Appl. Catal. B: Environ., 32, 195-204 (2001).
CPC cooperation, http://www.cpc.com.tw/big5/content/index.asp?pno=43.
Debecker, D. P., Bertinchamps, F., Blangenois, N., Eloy, P., and Gaigneaux, E. M., On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furan vs. chlorobenzene, Appl. Catal. B: Environ., 74, 223-232 (2007).
Debecker, D. P., Delaigle, R., Eloy, P. and Gaigneaux, E. M., Abatement of model molecules for dioxin total oxidation on V2O5-WO3/TiO2 catalysts: The case of substituted oxygen-containing VOC, J. Mol. Catal. A, 289, 38-43 (2008).
Dhandapani, B. and Oyama, S. T., Gas phase ozone decomposition catalysts, Appl. Catal. B: Environ., 11, 129-166 (1997).
Einaga, H. and Futamura, S., Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal., 227, 304-312 (2004).
Einaga, H. and Futamura, S., Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides, J. Catal., 243, 446-450 (2006).
Einaga, H. and Futamura, S., Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone, Appl. Catal. B: Environ., 60, 49-55 (2005).
Einaga, H. and Ogata, A., Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater., 164, 1236-1241(2009).
Everaert, K. and Baeyens, J., Catalytic combustion of volatile organic compounds, J. Hazard. Mater., 109, 113-139 (2004).
Everaert, K. and Baeyens, J., The formation and emission of dioxins in large scale thermal processes, Chemosphere, 46, 439-448 (2002).
Finocchio, E., Busca, G. and Notaro, M., A review of catalytic processes for the destruction of PCDD and PCDF from waste gases, Appl. Catal. B: Environ., 62, 12-20 (2006).
Gao, Y., Kim, Y. J. and Chambers, S. A., Preparation and characterization of epitaxial iron oxide films, J. Mater. Res., 13, 2003-2014 (1998).
Goemans, M., Clarysse, P., Joannes, J., Clercq, P. D., Lenaerts, S., Matthys, K. and Boels, K., Catalytic NOx reduction with simultaneous dioxin and furan oxidation, Chemosphere, 50, 489-497 (2003).
Hansen, D. A., Atkinson, R. and Pitts, J. N., Rate constants for the reaction of OH radicals with a series of aromatic hydrocarbons, J. Phys. Chem., 79, 1763-1766 (1975).
Hao, A., Cheng, D., Guo, Y. And Liang, Y., Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature, Appl. Catal. B: Environ., 33, 217-222 (2001).
Hazardous Substances Data Bank, TOMES? Denver, CO: Micromedex, Inc (1995).
Huang, H. and Buekens, A., On the mechanisms of dioxin formation in combustion processes, Chemosphere, 9, 4099-4117 (1995).
Hung, W. T. and Lin, C. F., Use of regenerated ferric oxide for CO destruction and suppressing dioxin formation in flue gas in a pilot-scale incinerator, Chemosphere, 53, 727-735 (2003).
Ide, Y., Kashiwabara, K., Mori, S., Okada, T. and Hara, M., Catalytic decomposition of dioxin from MSW incinerator flue gas, Chemosphere, 32, 189-198 (1996).
Imai, T., Matsui, T., Fujii, Y., Nakai, T. and Tanaka, S., Oxidation catalyst of iron oxide suppressing dioxin formation in polyethylene combustion, J. Mater. Cy. Waste Manag., 3, 103-109 (2001).
Imamura, S. and Ikebata, M., Decomposition of ozone on a silver catalyst, Ind. Eng. Chem. Res., 30, 217-221 (1991).
Jong, V. D., Cieplik, M. K., Louw, R., Formation of dioxins in the catalytic combustion of chlorobenzene and a micropollutant-like mixture on Pt-Al2O3, Environ. Sci. Technol., 38, 5217-5223 (2004).
Judd, R. W., Komodromos, C., and Reynolds, T. J., Alkali chloride doped manganese oxide catalysts: Nature of the active surface, Catal. Today, 13, 237-244 (1992).
Kasprzyk-Hordern, B., Ziolek, M. and Nawrocki, J., Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment, Appl. Catal. B: Environ., 46, 639-669 (2003).
Khaleel, A. and Al-Nayli, A., Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene, Appl. Catal. B: Environ., 80, 176-184 (2008).
Kishimoto, A., Oka, T., Yoshida, K. and Nakanishi, J., Cost effectiveness of reducing dioxin emissions from municipal solid waste incinerators in Japan, Environ. Sci. Technol., 35, 2861-2866 (2001).
Kock, A. J. H. M., Fortuin, H. M., Geus, J.W., The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres. J. Catal., 96, 261-275 (1985).
Kogevinas, M, Human health effects of dioxins: cancer, reproductive and endocrine system effect, Human Reproduction Update, 7, 331-339 (2001).
Konova, P., Stoyanova, M., Naydenov, A., Christoskova, St. and Mehandjiev, D., Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide, Appl. Catal. A: General, 298 , 109-114 (2006).
Krishnamoorthy, S., Baker, J. P. and Amiridis, M. D., Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts, Catal. Today, 40, 39-46 (1998).
Larrubia, M. A. and Busca, G., An FT-IR study of the conversion of 2-chloropropane, o-dichlorobenzene and dibenzofuran on V2O5-MoO3-TiO2 SCR-DeNOx catalysts, Appl. Catal. B: Environ., 39, 343-352 (2002).
Lee, J. E. and Choi, Wonyong, Theoretical study on the reaction of OH radicals with polychlorinated dibenzo-p-dioxins, J. Phys. Chem. A, 108, 607-614 (2004).
Legube, B. and Leitner, N. K. V., Catalytic ozonation: a promising advanced oxidation technology for water treatment, Catal. Today, 53, 61-72 (1999).
Leichsenring, S., Lenoir, D., May, H. G. and Kettrup, A., Catalytic oxidation of chloroaromatic trace contaminants adsorbed on wessalith day by ozone, Chemosphere, 33, 343-352 (1996).
Li, W. and Oyama, S. T., Mechanism of ozone decomposition on manganese oxide catalyst. 2. Steady-state and transient kinetic studies, J. Am. Chem. Soc., 120, 9047-9052 (1998).
Li, W., Gibbs, G. V., and Oyama, S. T., Mechanism of ozone decomposition on manganese oxide catalyst. 1. In situ Raman spectroscopy and Ab initio molecular orbital calculations, J. Am. Chem. Soc., 120, 9041-9046 (1998).
Lichtenberger, J. and Amiridis, M. D., Catalytic oxidation of chlorinated benzene over V2O5/TiO2 catalysts, J. Catal., 223, 296-308 (2004).
Liljelind, P., JUnsworth, J., Maaskant, O. and Marklund, S., Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction, chemosphere, 42, 615-623 (2001).
Lin, H. Y., Chen, Y. W. and Wang, W. J., Preparation of nanosized iron oxide and its application in low temperature CO oxidation, J. Nano. Res., 7, 249-263 (2005).
Liu, Y., Luo, M., Wei, Z., Xin, Q., Ying, P. and Li, C., Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts, Appl. Catal. B: Environ., 29 61-67 (2001).
Mckay, G., Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review, Chem. Eng. J., 86, 343-368 (2002).
Mehandjiev, D., Cheshkova, K., Naydenov, A. and Georgesku, V., Catalytic oxidation of CO and C6H6 on alumina supported Cu-Cr and Co-Cr oxide catalysts in the presence of ozone, React. Kinet. Catal. Lett., 76, 287-293 (2002).
Merz, E., and Gaia, F., Comparison of economics of various ozone generation systems, Ozone Sci. Eng., 12, 401-405 (1990).
Michel, A. E., Usher, C. R., and Grassian, V. H., Reactive uptake of ozone on mineral oxides and mineral dusts, Atmos. Environ., 37, 3201-3211 (2003).
Mogili, P. K., Kleiber, P. D., Young, M. A., and Grassian, V. H., Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: An environmental aerosol reaction chamber study, J. Phys. Chem. A, 110, 13799-13807 (2006).
Munteanu, G., Ilieva, L., Andreeva, D., Kinetic parameters obtained from TPR data for alpha-Fe2O3 and Au/alpha-Fe2O3 systems. Thermochimica Acta, 291, 171-177 (1997).
NATO/CCMS (North Atlantic Treaty Organization/Committee on the Challenges of Modern Society), Pilot study on international information exchange on dioxins and related compounds. International toxicity equivalency Factor (I-TEF) method of risk assessment for complex mixtures of dioxins and related compounds, Brussel (1998).
Naydenov, A. and Mehandjiev, D., Complete oxidation of benzene on manganese dioxide by ozone, Appl. Catal. A: General, 97, 17-22 (1993).
Naydenov, A., Stoyanova, R. and Mehandjiev, D., Ozone decomposition and CO oxidation on CeO2, J. Mol. Catal. A, 98, 9-14 (1995).
Okumura, M., Akita, T., Haruta, M., Wang, X., Kajikawa, O. and Okada, O., Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin, Appl. Catal. B: Environ., 41, 43-52 (2003).
Oyama, S. T., Chemical and catalytic properties of ozone, Catal. Rev. Sci. Eng. 42, 279-322 (2000).
Radhakrishnan, R. and Oyama, S. T., Electron transfer effects in ozone decomposition on supported manganese oxide, J. Phys. Chem. B, 105, 4245-4253 (2001).
Raghunathan, K. and Gullett, B. K., Role of sulfur in reducing PCDD and PCDF formation, Environ. Sci. Technol., 30, 1827-1832 (1996).
Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y.F., Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts, Catal. Today, 131, 477-482 (2008).
Reed, C., Lee, Y. K. and Oyama, S. T., Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone, J. Phys. Chem. B, 110, 4207-4216 (2006).
Reed, C., Xi, Y. and Oyama, S. T., Distinguishing between reaction intermediates and spectators: A kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst, J. Catal., 235, 378-392 (2005).
Ruokojärvi, P., Asikainen, A., Ruuskanen , J., Tuppurainen, K., Mueller, C., Kilpinen, P. and Keturi, N. Y., Urea as a PCDD/F inhibitor in municipal waste incineration, J. Air & Waste Manage. Assoc., 51, 422-431 (2001).
Sahle-Demessie, E. and Devulapelli, V. G., Vapor phase oxidation of dimethyl sulfide with ozone over V2O5/TiO2 catalyst, Appl. Catal. B: Environ., 84, 408-419 (2008).
Satterfield, C. N., Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York (1991).
Scire, S., Minico, S., and Crisafulli, C., Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene, Appl. Catal. B: Environ., 45, 117-125 (2003).
Stanmore, B. R., The formation of dioxins in combustion systems, Combustion and Flame, 136, 398-427 (2004).
Stoyanova, M., Konova, P., Nikolov, P., Naydenov, A., Christoskova, St. and Mehandjiev, D., Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs, Chem. Eng. J., 122 41-46 (2006).
Takasuga, T., Makino, T., Tsubota, K., and Takeda, N., Formation of dioxins (PCDDs/PCDFs) by dioxin-free fly ash as a catalyst and relation with several chlorine-sources, Chemosphere, 40, 1003-1007 (2000).
Taralunga, M., Mijoin, J., and Magnoux, P., Catalytic destruction of chlorinated POPs- Catalytic oxidation of chlorobenzene over PtHFAU catalysts, Appl. Catal. B: Environ., 60, 163-171 (2005).
Tseng, T. K., Chu, H., Ko, T. H. and Chaung, L. K., The kinetic of the catalytic decomposition of methyl isobutyl ketone over a Pt/?-Al2O3 catalyst, Chemosphere, 61, 469-477 (2005).
USEPA. Health assessment document for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, Washington, D.C., EPA/600/BP-92/001a (1994).
van den Brink, R. W., Krzan, M., Feijen-Jeurissen, M. M. R., Louw, R. and Mulder, P., The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts, Appl. Catal. B: Environ., 24, 255-264 (2000).
van den Brink, R. W., Louw, R. And Mulder, P., Formation of polychlorinated benzenes during the catalytic conbustion of chlorobenzene using Pt/r-Al2O3 catalyst, Appl. Catal. B: Environ., 16, 219-226 (1998).
Vu, V. H., Belkouch, J., Ould-Dris, A. and Taouk, B., Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst, J. Hazard. Mater., 169, 758-765 (2009).
Wang, H. C., Hwang, J. F., Chi, K. H. and Chang, M. B., Formation and removel of PCDD/Fs in a municipal waste incinerator during different operating periods, Chemosphere, 67, S177-S184 (2007).
Wang, H.C., Chang, S. H., Hung, P.C., Hwang, J.F. and Chang, M. B., Catalytic oxidation of gaseous PCDD/F with ozone over iron oxide catalysts, Chemosphere, 71, 388-397 (2008).
Wang, H.C., Chang, S. H., Hung, P.C., Hwang, J.F. and Chang, M. B., Synergistic effect of transition metal oxides and ozone on PCDD/F destruction, J. Hazard. Mater., 164, 1452-1459 (2009).
Webber, R., Plinke, M., Xu, Z. and Wilken, M., Destruction efficiency of catalytic filters for polychlorinated dibenzo-p-dioxin and dibenzofurans in laboratory test and field operation-insight into destruction and adsorption behavior of semivolatile compounds, Appl. Catal. B: Environ., 31, 195-207 (2001).
Webber, R., Sakurai, T. and Hagenmaier, H., Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts, Appl. Catal. B: Environ., 20, 249-256 (1999).
Weber, R. and Sakurai, T., Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics, Appl. Catal. B: Environ., 34, 113-127 (2001).
Weber, R., Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies-Review on current status and assessment gaps, Chemosphere, 67, S109-S117 (2007).
Wu, K. C., Tung, Y. L. Chen, Y. L. and Chen, Y. W., Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions, Appl. Catal. B: Environ., 53, 111-116 (2004).
Xi, Y., Reed, C., Lee, Y. K. and Oyama, S. T., Acetone oxidation using ozone on manganese oxide catalysts, J. Phys. Chem. B, 109, 17587-17596 (2005).
Xingyi, W., Qian, K. and Dao, Li, Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts, Appl. Catal. B: Environ., 86, 166-175 (2009).
Yim, S. D., Koh, D. J. and Nam, I. S., A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts, Catal. Today, 75, 269-276 (2002).
Zaslowsky, J. A., Urbach, H. B., Leighton, F., Wnuk, R. J. and Wojtowicz, J. A., The kinetics of the homogeneous gas phase thermal decomposition of ozone, J. Am. Chem. Soc., 82, 2682-2686 (1960).
Zhang, P., Zhan, Y., Cai, B., Hao, C., Wang, J., Liu, C., Meng, Z., Yin, Z., Chen, Q., Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue, Nano. Res., 3, 235-243 (2010).
Zhang, T., and Ma, J., Catalytic ozonation of trace nitrobenzene in water with synthetic goethite, J. Mol. Catal. A: Chem., 279, 82-89 (2008).
Zhou,W., Fu, H., Pan, K., Tian, C., Qu, Y., Lu, P., Sun, C.C., Mesoporous TiO2/α-Fe2O3: Bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption, J. Phys. Chem. C., 112, 19584-19589 (2008).
Zimmermann, R., Blumenstock, M., Heger, H. J., Schramm, K. W., Kettrup, A., Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects, Environ. Sci. Technol., 35, 1019-1030 (2001).
指導教授 張木彬(Moo-Been Chang) 審核日期 2011-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明