博碩士論文 973206002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.149.238.1
姓名 游原鑑(Yuan-Chien Yu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 矽甲烷供氣系統作業人為可靠度分析
(Human Reliability Assessment of Silane Cylinder Change Process)
相關論文
★ 氫氟酸玻璃薄化製程之安全評估與風險控制★ 台北縣毒性化學物質運作場所災害潛勢分析
★ 潛盾隧道作業安全分析★ ISO 50001能源管理系統建置機制研究
★ 廢棄物管理e化系統設計與應用★ 印刷電路板製程高溫烘烤設備失效模式與效應分析研究
★ 承攬風險管理★ 光電業組立製程人因風險探討
★ 濺鍍耙材噴砂作業粉塵及噪音暴露危害評估★ 光電廠增光膜製程健康風險評估與控制
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 高階製程安全管理架構
★ 工業化學品整合管理制度探討★ 半導體業承攬作業風險評估
★ 職業安全衛生績效管理機制★ 事件樹於職業安全風險評估應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽甲烷是高科技產業使用的重要製程氣體,因矽甲烷與空氣接觸後具有自燃或延遲爆炸的特性,因此使用安全有特別的考量。供氣系統安全防護雖然可以預防或消減矽甲烷發生洩漏後所產生的危害,但如果能有效控制矽甲烷洩漏發生率,則可防止發生事故。除了供氣系統設備管線損壞造成的矽甲烷洩漏,人員進行鋼瓶換裝作業所發生的失誤動作亦為矽甲烷發生洩漏的原因之一,因此本研究藉由人為可靠度技術,計算鋼瓶換裝作業中可能發生的矽甲烷洩漏機率。本研究運用氣瓶櫃與Y-鋼瓶兩種類型的矽甲烷供氣系統標準作業程序,以刪減與合併的原則進行第一階段的處理,並藉由層級作業分析進行系統化的作業排序。第二階段處理則篩選關鍵的作業步驟,並將篩選後的關鍵作業步驟轉換為失誤描述且以PHEA的失誤類型進行分類,藉由HRA Event Tree計算空鋼瓶拆卸後與實鋼瓶安裝後兩階段鋼瓶更換作業所可能造成的矽甲烷洩漏機率,並判斷主要造成失效的情境。本研究評估的結果,氣瓶櫃作業以鋼瓶墊片未安裝為主要的失誤步驟,Y-鋼作業則為吹除次數未正確設定,因搬運鋼瓶時所發生的碰撞傾倒則為兩系統中共同的關鍵人為失誤因素。藉由本研究所建立的分析方法,可明確辨識影響作業失效的關鍵步驟,並防止因換瓶作業造成矽甲烷洩漏事件。
摘要(英) Silane is a special gas widely used in semiconductor, photovoltaic, and flat panel display manufacturing. Silane is pyrophoric but does not always ignite when leaked. The delayed ignition may result in explosion in a confined environment. Most silane accidents occur during gas cabinet cylinder change. Increased silane consumption increases the frequency of empty cylinder replacement and hence the silane release. Consequently, bulk silane gas supply system, with cylinders containing more than 250 liters of silane, has gradually replaced gas cabinet.
Despite enhanced safety features of silane supply systems, human errors during cylinder change continue to be the main cause for silane accidents. This study is aimed to analyze human reliability in silane cylinder change process for both gas cabinet and bulk silane supply systems. Since the proposed human reliability assessment technique is based on the standard operating procedures of cylinder change, the assessment results can also be used to prevent human errors.
Because of the fact that certain steps in the cylinder change Standard Operating Procedures involve no operator intervention, these procedures are regrouped. The first phase utilizes the Hierarchical task Analysis principle to delete and combine the original cylinder change procedures. The second phase further transfers the major procedures into error types. The Human Reliability Assessment Event Tree is then constructed based on the condensed version of the operating procedures. Results indicate that incomplete installation of the gasket is the major human error for the gas cabinet cylinder change process while incomplete purge is the most significant error for the bulk silane supply system. Safe handling of cylinders is critical in preventing silane leak in both systems.
關鍵字(中) ★ 矽甲烷供氣系統
★ 人為可靠度分析
★ HRA Event Tree
★ 人為失誤
關鍵字(英) ★ Silane supply system safety
★ Human reliability assessment
★ Human Reliability Assessment Event Tree
論文目次 摘要 .................................................................................................................. i
Abstract ............................................................................................................ ii
誌謝 ................................................................................................................ iv
目錄 ................................................................................................................. v
圖目錄 .......................................................................................................... viii
表目錄 ............................................................................................................. x
第一章 前言 ................................................................................................... 1
1.1研究緣貣 ................................................................................................ 1
1.2研究方法與目的 ..................................................................................... 3
1.3預期成果 ................................................................................................ 4
第二章 人為失誤與人為可靠度分析技術 ..................................................... 5
2.1 人為失誤類型 ....................................................................................... 6
2.1.1 基礎行為模式SRK ......................................................................... 6
2.1.2 人為失誤與基礎行為模式 .............................................................. 8
2.1.3 浴盆曲線人為失誤模式 .................................................................. 8
2.2 HRA分析技術概述 ............................................................................. 11
2.3 第一代HRA分析技術........................................................................ 14
2.3.1 THERP ........................................................................................... 14
2.3.2 HEART ........................................................................................... 16
2.3.3 SPAR-H .......................................................................................... 21
2.4 第二代HRA分析技術........................................................................ 23
2.4.1 ATHEANA ..................................................................................... 23
2.4.2 CREAM .......................................................................................... 25
2.5 專家判斷HRA分析技術 .................................................................... 28
2.5.1 APJ ................................................................................................. 28
2.5.2 SLIM .............................................................................................. 29
2.6 人為可靠度數據與資料庫 .................................................................. 31
2.7 人為可靠度技術的優點與限制比較 ................................................... 33
第三章 矽甲烷鋼瓶更換失效評估機制 ....................................................... 39
3.1 HRA分析步驟與研究執行程序 .......................................................... 39
3.2 層級作業分析(HTA) ........................................................................... 42
3.3 預測人為失誤分析(PHEA) ................................................................. 43
3.4 事件樹分析與HRA Event Tree .......................................................... 44
3.4.1 事件樹分析(ETA) ......................................................................... 44
3.4.2 HRA Event Tree ............................................................................. 47
3.4.3 HRA Event Tree應用於鋼瓶更換作業 ......................................... 49
3.5 鋼瓶更換作業人為失誤數據 .............................................................. 50
3.6 矽甲烷供氣系統作業失效評估方法 ................................................... 51
第四章 矽甲烷鋼瓶更換作業HRA Event Tree建構................................... 53
4.1 矽甲烷供氣系統說明與鋼瓶更換程序 ............................................... 53
4.2 鋼瓶更換步驟選擇與失誤 .................................................................. 60
4.2.1 鋼瓶更換SOP刪減與合併 ........................................................... 60
4.2.2 鋼瓶更換步驟HTA分析 .............................................................. 67
4.2.3 鋼瓶更換步驟篩選........................................................................ 70
4.2.4 鋼瓶更換失誤步驟分類與描述 .................................................... 73
4.3 建構鋼瓶更換HRA Event Tree .......................................................... 75
4.3.1 氣瓶櫃鋼瓶更換HRA Event Tree 1 ............................................. 76
4.3.2 氣瓶櫃鋼瓶更換HRA Event Tree 2 ............................................. 79
4.3.3 Y-鋼更換HRA Event Tree 1 .......................................................... 83
4.3.4 Y-鋼更換HRA Event Tree 2 .......................................................... 84
4.4 量化計算HRA Event Tree失效率 ..................................................... 87
4.4.1 鋼瓶更換步驟失誤率數據來源 .................................................... 87
4.4.2 衡量失誤步驟相關的硬體失效 .................................................... 91
4.4.3 量化計算氣瓶櫃HRA Event Tree洩漏與失效率 ........................ 93
4.4.4 量化計算Y-鋼HRA Event Tree洩漏與失效率 ........................... 96
4.5 鋼瓶更換步驟HRA Event Tree結果與討論 ...................................... 99
第五章 結論與建議 .................................................................................... 102
5.1 結論 ................................................................................................... 102
5.2 建議 ................................................................................................... 104
參考文獻 ..................................................................................................... 105
參考文獻 [1] E.Y. Ngai, Q2/2010 Silane Safety, Specialty Gas Report, Vol. 49, 2010. http://www.specialtygasreport.com/features/429
[2] M.C. Leva, Human Errors Analysis and Safety Management Systems in Hazardous Activities (Interim Report), International Institute for Applied Systems Analysis, Austria, January 2005.
[3] J. Rasmussen and K.J. Vincente, Cognitive control of Human Activities: Implication for Ecological Interface Design, Riso National Laboratory, Denmark, 1987.
[4] 葉宇光,事件樹於職業安全風險評估研究,國立中央大學,2009年1月。
[5] J.R. Chen, H.Y. Tsai, S.K. Chen, H.R. Pan, S.C. Hu, C.C. Shen, C.M. Kuan, Y.C. Lee and C.C. Wu, Analysis of a Sailane Explosion in a Photovoltaic Fabrication Plant, Process Safety Progress, Vol. 25, pp. 237-244, September 2006.
[6] J. Reason, Human Error: Models and Management, British Medical Journal, Vol. 320, pp. 119-121, 2000.
[7] S. Wu, S. Hrudey, S. French, T. Bedford, E. Soane and S. Pollard, A Role for Human Reliability Analysis in Preventing Drinking Water Incidents and Securing Safe Drinking Water, Water Research, Vol. 43, pp. 3227-3238, 2009.
[8] E. Hollnagel, Human Reliability Assessment in Context, Nuclear Engineering and Technology, Vol. 37, pp. 159-166, April 2005.
[9] J. Bell and J. Holroyd, Review of Human Reliability Assessment Methods, Health and Safety Executive, UK, 2009.
[10] M. Marseguerra, E. Zio and M. Librizzi, Quantitative Developments in the Cognitive Reliability and Error Analysis Method for the Assessment of Human Performance, Annals of Nuclear Energy, Vol. 33, pp. 894-910, 2006.
[11] B. Kirwan and H. Gibson, CARA: A Human Reliability Assessment Tool for Air Traffic Safety Management-Technical Basis and Preliminary Architecture, The Safety of Systems Proceedings of the Fifteenth Safety-critical Systems Symposium, pp. 197-214, UK, 2007.
[12] V. Gerdes, HRA Techniques: A Selection Matrix, Microelectronic Reliability, Vol. 35, pp. 1215-1231, 1995.
[13] J.F. Whiting, Improving Human Reliability in OHSMS-Errors and Mistakes are Consequences Not Causes, Risk Engineering Society of Australia, 2003.
http://www.aposho.org/conference/img/16_Session1.doc
[14] R.E. Giuntini, Mathematical Characterization of Human Reliability for Multi-Task System Operations, Institute of Electrical and Electronics Engineers, 2000.
[15] R.B. Abemethy, Weibull Analysis Handbook, Aero Propulsion Laboratory, 1983.
[16] A.D. Swain and H.E. Guttmann, Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, US Nuclear Regulatory Commission, 1983.
[17] B. Kirwan, The Validation of Three Human Reliability Quantification Techniques-THERP, HEART and JHEDI: Part 1-Technique Descriptions and Validation Issues, Applied Ergonomics, Vol. 27, pp. 359-373, 1996.
[18] M. Harrison, Human Error Analysis and Reliability Assessment, The Interdisciplinary Research Collaboration in Dependability, 2004. http://spiderman-2.laas.fr/IFIPWG/Workshops&Meetings/46/05-Harrison.pdf
[19] D. Gertman, H. Blackman, J. Marble, J. Byers and C. Smith, The SPAR-H Human Reliability Analysis Methods, US Nuclear Regulatory Commission, August 2005.
[20] R.L. Boring and D.I. Gertman, Human Error and Available Time in SPAR-H, Idaho National Engineering and Environmental Laboratory, 2004.
[21] D.A. Powers, Technical Basis and Implementation Guidelines for Technique for Human Event Analysis, US Nuclear Regulatory Commission, May 2000.
[22] J. Forester, A. Kolaczkowski, S. Cooper, D. Bley and E. Lois, ATHEANA User’s Guide (Final Report), US Nuclear Regulatory Commission, June 2007.
[23] M. Marseguerra, E. Zio and M. Librizzi, Quantitative Developments in the Cognitive Reliability and Error Analysis Method for the Assessment of Human Performance, Annals of Nuclear Energy, Vol. 33, pp. 894-910, 2006.
[24] Y. Fujita and E. Hollnagel, Failures without Errors: Quantification of Context in HRA, Reliability Engineering and System Safety, Vol. 83, pp. 145-151, 2004.
[25] M. Marseguerra, E. Zio and M. Librizzi, Human Reliability Analysis by Fuzzy CREAM, Risk Analysis, Vol. 27, pp. 137-154, 2007.
[26] P.R. Amyotte and F.I. Khan, Development of a Human Error Probability Index for Offshore Platform Evacuations, Petroleum Research Atlantic Canada, Canada, August 2005.
[27] K.S. Park and T.I. Lee, A New Method for Estimating Human Error Probabilities: AHP-SLIM, Reliability Engineering and System Safety, Vol. 93, pp. 578-587, 2008.
[28] S.E. Taylor-Adam and B. Kirwan, Human Reliability Data Requirements, International Journal of Quality and Reliability Management, Vol. 12, pp. 24-46, 1995.
[29] B. Kirwan, G. Basra and S.E. Taylor-Adam, CORE-DATA: A Computerised Human Error Database for Human Reliability Support, Institute of Electrical and Electronics Engineers, 1997.
[30] Risk Management- Risk Assessment Techniques, IEC/ISO 31010, International Electrotechnical Commission and International Organization for Standardization, Switzerland, November 2009.
[31] B. Kirwan, Human Reliability Assessment, Evaluation of Human Work, pp. 921-968, UK, 1994.
[32] Human Factor Briefing Notes: Human Reliability Analysis, the Institute of Petroleum, UK, 2003.
[33] D. Embrey, Task Analysis Techniques, Human Reliability Associates Ltd, 2000.
[34] R. Maguire, Validating a Process for Understanding Human Error Probabilities in Complex Human Computer Interfaces, SE Validation Ltd, 2005.
[35] S. Mannan and F.P. Lees, Lees’ Prevention in the Process Industries: Hazard Identification, Assessment and Control, Third Edition, Butterworth Heinemann, pp. 74-77, 2004.
[36] 陳清庭、張翼,氯氣氣瓶櫃危害分析與改善研究,工業安全科技,46-53頁,2006年6月。
[37] 王嘉麟,運用失效模式與影響分析評估矽甲烷供應系統之安全性:以TFT-LCD廠為例,國立交通大學,2006年12月。
[38] 劉鴻世、曾淑春、黃志強、徐希慶,矽甲烷(SiH4)氣瓶櫃操作人為失誤之分析,2003年。
[39] V.M. Fthenakis and S.R. Trammell, Reference Guide for Hazard Analysis in PV Facilities, Brookhaven National Laboratory, New York, September 2003.
[40] ISA-84 Process Safety and User Resources, CD-ROM, International Society of Automation, Triangle, North Carolina, 2007.
[41] C. Baber and N.A. Stanton, Human Identification Techniques Applied to Public Technology: Predictions Compared with Observed Use, Applied Ergonomics, Vol. 27, pp. 119-131, 1996.
[42] C.A. Ericson, Hazard Analysis Techniques for System Safety, Second Edition, John Wiley and Sons, Inc., pp. 223-234. 2005.
[43] M. Rausand, System Reliability Theory, Second Edition, John Wiley and Sons, Inc., 2004.
[44] I. Sutton, E-book 2: Process Risk Management, First Edition, Sutton Technical Books, 2007.
[45] Layer of Protection Analysis: Simplified Process Risk Assessment, Center for Chemical Process Safety of the American Institute of Chemical Engineers, New Work, 2001.
[46] ioMosaic Corporation, Designing an Effective Risk Matrix. http://www.iomosaic.com
[47] J.E. Nunez Mc Leod and S.S. Rivera, Human Error Management Optimization in CREAM NPP, Proceedings of World Congress on Engineering, Vol. 1, UK, 2009.
[48] U.S. Department of Homeland Security, Risk-based Decision-making Guidelines: Applying Risk Assessment Tools-Chapter 12-Event Tree Analysis, Procedures for Assessing Risks.
http://www.uscg.mil
指導教授 于樹偉(Shuh Woei Yu) 審核日期 2011-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明