博碩士論文 976204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:3.17.184.90
姓名 蘇意筑(Yi-chu Su)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用坡高與坡角反衍岩體強度
(Inversions of rock mass strength from slope height and angle)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 車籠埔斷層北段之地下構造研究
★ 運用類神經網路進行地震誘發山崩之潛感分析★ 地形地質均質區劃分與山崩因子探討
★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討
★ 軟弱沉積岩層滲透異向性之探討★ 由世界應力量測資料探討不同地體構造區的應力特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地形反映了地殼抬昇與侵蝕作用,長期以來,源於完整岩石強度很高,因此切蝕被認為是型塑地形的最重要因素。近年來研究卻發現,大尺度岩體強度將遠低於室內岩石實驗獲得之強度,因此,岩體強度極可能是限制地形高差的另外一個重要因素。坡度與坡高常被用於束限岩體強度參數,不論是地球或火星都有一些研究案例。本研究利用岩體強度特性、邊坡穩定性及地表形貌三者之間的關係,透過邊坡反應曲線配合地形推估岩體強度。本研究將RMR岩體分類法結合Mohr-Coulomb破壞準則、GSI地質強度指標結合Hoek-Brown破壞準則,利用邊坡穩定分析計算不同強度材料組成及不同高度之下岩坡之安全係數,找出不同坡高之下安全係數為1時的臨界穩定坡角,並展繪RMR-based以及GSI-based邊坡反應曲線,而其中GSI-based邊坡反應曲線結合了有效應力概念(考慮孔隙水壓對邊坡穩定之影響),使得GSI-based邊坡反應曲線可用於反推有地下水岩坡的岩體強度。本研究經由實際案例說明,利用邊坡反應曲線,配合現地地形之坡高與坡角資料,逆推獲得之GSI值與現地調查之GSI值差異不大,顯示利用GSI-based邊坡反應曲線反推岩體強度具有可行性。最後,透過敏感度分析得知,單壓強度較低、孔隙水壓較高或是低矮岩坡,利用地形配合邊坡反應曲線推估岩體GSI值時,推估結果之變動範圍較大,因此,GSI值逆推時,對Hoek-Brown破壞準則中其它強度參數的掌握要更準確。
摘要(英) Relief is a fundamental landscape reflecting the influence of uplift and erosion. Contrary to the traditional concept that the relief is dominated by incision, recent research indicated that the landscape-scale material strength play an important role on the landform process. However, it is difficult to obtain a representative strength parameters based on laboratory rock tests. Slope height and slope angle were frequently used to infer the strength of rock mass (both for earth and Mars). In this study, a series of slope response curves are proposed to constrain the rock mass strength. Non-linear Hoek-Brown failure criterion is incorporated into the proposed model where the linear Mohr-Coulomb failure envelop seems oversimplified. Field work (measure the geological strength index; GSI) are conducted to validate the non-linear model which the influence of pore pressure is considered. A difference less than 8% between the GSIs obtained from back analysis and site investigation indicates the feasibility to back calculate the rock mass strength from GSI-based slope performance curve. Consequently, the strength of rock mass could be inferred from the topography. Based on parametric study, slopes with high uniaxial compressive strength, low pore water pressure and high slope height are less sensitive to the back calculations.
關鍵字(中) ★ 邊坡反應曲線
★ 邊坡穩定
★ 岩體強度
關鍵字(英) ★ Rock mass strength
★ Slope performance curve
★ Slope stability
論文目次 摘要 I
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究流程 4
1.3 論文架構 6
第二章 文獻回顧 7
2.1 岩體強度 7
2.1.1 RMR與摩爾庫倫破壞準則 8
2.1.2 GSI與Hoek and Brown破壞準則 10
2.2 邊坡反應曲線 14
2.3 反算岩體強度 18
2.4 地下水壓對岩坡穩定性之影響 21
第三章 研究方法 23
3.1 邊坡極限平衡分析程式SLIDE 5.0 23
3.2 邊坡模型與強度參數 24
3.2.1 RMR-based邊坡反應曲線 24
3.2.2 GSI-based 邊坡反應曲線 25
3.3 岩體分類評值野外調查方法 27
3.3.1 RMR值野外調查方法 27
3.3.2 GSI野外調查方法 28
第四章 結果與討論 31
4.1 RMR-based邊坡反應曲線 31
4.2 GSI-based邊坡反應曲線 32
4.3 利用邊坡反應曲線推估岩體強度參數 39
4.3.1 利用RMR-based邊坡反應曲線推估岩體強度參數 40
4.3.2 利用GSI-based邊坡反應曲線推估岩體強度參數 43
4.4 邊坡反應曲線逆推岩盤強度特性敏感性分析 55
4.4.1 孔隙水壓對強度逆分析之敏感性分析 55
4.4.2 單壓強度對強度逆分析之敏感性分析 56
4.4.3 坡高對強度逆分析之敏感性分析 57
4.5 綜合討論 58
4.5.1 邊坡穩定分析方法對邊坡反應曲線之影響 58
4.5.2 岩體強度參數逆分析之可行性 60
4.5.3 邊坡反應曲線推估岩體強度存在之問題 61
第五章 結論與建議 63
5.1 結論 63
5.2 建議 65
引用文獻 66
附錄A GSI野外調查方法 72
附錄B GSI-based邊坡反應曲線 80
附錄C 台灣梨山地區及達見地區岩體強度 98
附錄D Douglas[52]與Taheri and Tani[51]岩坡資料 119
附錄E 梨山地形資料與GSI-based邊坡反應曲線 122
參考文獻 〔1〕 Edelbro, C., “Evaluation of rock mass strength criteria”, Lulea University of Technology, Department of Civil Environmental Engineering, Licentiate thesis, 2004.
〔2〕 Augustinus, P. C., Selby, M. J., “Rock Slope Development in McMurdo Oasis, Antarctica, and Implications for Interpretations of Glacial History”, Geografiska Annaler. Series A, Physical Geography, Vol. 72, 1, pp. 55-62, 1990.
〔3〕 Sjoberg, J., “Estimating rock mass strength using the Hoek-Brown failure criterion and rock mass classification-A review and application to the Aznalcollar open pit”, Technical Report 1996:10T, Lulea University of Technology, Division of Rock Mechanics, Lulea, Sweden, 1997.
〔4〕 Hoek, E., Bray, J. W., Rock Slope Engineering3nd ed., The Institution of Mining and Metallurgy, 1981.
〔5〕 王鑫,「中橫公路道路邊坡的地貌分析」,行政院國家科學委員會,防災科技研究報74-48號,1986。
〔6〕 洪如江,「變質岩順向坡力學性質與穩定性之研究(二)」,行政院國家科學委員會,防災科技研究報78-52號,1990。
〔7〕 楊航宇,顏志平,朱贊凌,羅志聰,公路邊坡防護與治理,中國人民出版社,中國,2002。
〔8〕 Donati, L., and Turrini, M. C., “An objective method to rank the importance of the factors predisposing to landslides with the GISmethodology:a lication to an area of the Apennines (Valnerina;Perugia, Italy)”, Engineering Geology, Vol. 63, pp. 277-289,2002.
〔9〕 黃國修,「大型岩崩之潛勢與災害影響範圍之研究」,國立中央大學應用地質研究所,碩士論文,民國94年。
〔10〕 黃國修,董家鈞,「岩坡GSI-based反應曲線模式」,2006岩盤工程研討會論文集,台南,民國95年。
〔11〕 Haines, A., Terbrugge P. J., “Preliminary estimation of rock slope stability using rock mass classification systems”, Proceed 7th Cong congress on Rock Mechanics, ISRM, Aachen, Germany. 2nd Wittke W. publ. Balkema, Rotterdam, pp. 887-892, 1991.
〔12〕 Hoek, E., Brown, E. T., Underground excavations in rock, Institution of Mining and Metallurgy, London, pp.527, 1980.
〔13〕 Schultz, R. A., “Stability of rock slopes in Valles Marineris, Mars”, Geophysical Research Letters, Vol. 29, 19, pp.38-1-4, 2002.
〔14〕 Heok, E., “Reliability of Hoek-Brown estimates of rock mass properties and their impact on design”, International Journal of Rock Mechanics and Mining, 1998.
〔15〕 李春明,「以岩體分類探討非構造性控制破壞之岩坡最陡安全開挖坡度」,國立中央大學應用地質研究所,碩士論文,民國93年。
〔16〕 Laubscher, D. H., “Geomechanics classification of jointed rock masses mining applications”, Mining Technology: Transactions of the Institute of Mining & Metallurg, Vol. 86, pp. A1-8, 1977.
〔17〕 Selby, M. J., “A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand”, Zeitschrift for Geomorphologie, Vol.24, 1, pp. 31-51, 1980.
〔18〕 Bieniawski, Z. T., Engineering Rock Mass Classifications, Wiley, New York, 1989.
〔19〕 Hoek, E., Kaiser, P. K., Bawden, W. F., Support of underground excavations in hard rock, Rotterdam: Balkema, pp. 215, 1995.
〔20〕 Hoek, E., Brown, E. T., “Practical estimates of rock mass strength”, International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, Vol. 34, 8, pp. 1165-1186, 1997.
〔21〕 Şen, Z., Sadagah, B. H., “Modified rock mass classification system by continuous rating”, Engineering Geology, Vol. 67, pp. 269-280, 2003.
〔22〕 Hoek, E., “Strength of jointed rock masses”, 1983 Rankine Lecture, Geotechnique, Vol. 33, 3, pp. 187-223, 1983.
〔23〕 Hoek, E., Brown, E.T., “The Hoek-Brown failure criterion-a 1988 update”, In: J.C. Curran, Editor, Rock Engineering for Underground Excavations, Proceeds 15th Canadian Rock Mechanics Symposium, Department of Civil Engineering, University of Toronto, London, pp. 31–38,1988.
〔24〕 Hoek, E., Wood, D.,Shah, S., “A modified Hoek-Brown criterion for jointed rock masses”, In: Hudson, J. A., Editor, Proceeds of Rock Characterization, Symposium International of Society Rock Mechanics: Eurock '92, Brit. Geomechanics Society, Youngstown, Ohio, pp. 209-214, 1992.
〔25〕 Hoek, E., “Strength of rock and rock masses”, ISRM New Journal 2, Vol. 2, pp. 4-16, 1994.
〔26〕 Hoek, E., Kaiser, P.K., Bawden, W.F., Support of Underground Excavations in Hard Rock, Balkema, Canberra, pp. 215, 1995.
〔27〕 周晏勤,「結合廣義Hoek-Brown破壞準則及變形分析法於邊坡穩定分析」,國立成功大學資源工程系,博士論文,民國96年。
〔28〕 Hoek, E., Carranza-Torres, C., Corkum, B., “Hoek-Brown Failure Criterion-2002 Edition”, http://www.rocscience.com, 2002.
〔29〕 Duran, A., Douglas, K., “Do slopes designed with empirical rock mass strength criteria stand up?”, 9th ISRM International Congress on Rock Mechanics, Vol. 1, pp.87-90, Paris, France, 1999.
〔30〕 Schmidt, K. M., Montgomery, D. R., “Limits to relief”, Science, Vol. 270, pp. 617-620, 1995.
〔31〕 Bigot-Cormier, F., Montgomery, D. R., “Valles Marineris landslides: Evidence for a strength limit to Martian relief? “, Earth and Planetary Science Letters, Vol. 260, pp. 179-186, 2007.
〔32〕 Bye, A. R., Bell, F. G., “Stability assessment and slope design at Sandsloot open pit, South Africa”, International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 449-466. 2001,
〔33〕 Janbu, N., “Slope stability computation”, In: Hirsch. Eld, R. C., Paulos, S. J. (Eds.), Embankment Dam Engineering: Casagrande Memorial Volume, Wiley, New York, pp. 47-87, 1973.
〔34〕 Selby, M. J., Hillslope materials and processes, Oxford University Press, UK, 1982.
〔35〕 Selby, M. J., “Rock slopes”, Slope geotechnical engineering and geomorphology(Anderson, M. G., Richards, K. S. eds.) , Wiley, Chichester, pp. 475-504, 1987.
〔36〕 Moon, B. P., Selby, M. J., Rock mass strength and scarp forms in southern Africa, Geografiska Annaler, 65A, pp. 135-145, 1983.
〔37〕 Moon, B. P., “The forms of rock slopes in the Cape fold mountains”. South African geographical journal, Vol. 66, pp. 16-31, 1984.
〔38〕 Moon, B. P., “Controls on the form and development of rock slopes in fold terrane”, Hillslope processes (Abrahams, A.D. eds.), Allen & Unwin Inc., London, pp. 225-243, 1986.
〔39〕 Fernandez, T., Irigaray, C., El Hamdouni, R., Chacon, J., “Correlation between natural slope angle and rock mass strength rating in the Betic Cordillera, Granada, Spain”, Bulletin of engineering geology and the environment, Vol. 67, pp. 153-164, 2008.
〔40〕 Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Dueticke, Vienna, 1925.
〔41〕 Yang, X. L., Zou, J. F., “Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion”,International Journal of Rock Mechanics & Mining Sciences, Vol. 43, 1146-1152, 2006.
〔42〕 Fellenius, W., “Calculation of the stability of earth dams”, Proceedings of the Second Comgress on Large Dams, Vol. 4, 445-463, 1936.
〔43〕 Janbu, N., “Application of composite slip surface for stability analysis”, Proceeding of European conference on Stability of Earth Slopes, Stockholm, Vol. 3, pp.43-49, 1954.
〔44〕 Bishop, A. W., “The use of the clip circle in the stability analysis of slope”, Geotechnique, Vol. 5, pp. 7-17, 1995.
〔45〕 Morgenstern, N. R., Price, V. E., “The analysis of the stability of general slip surfaces”, Geotechnique, Vol. 15, 70-93, 1965.
〔46〕 Spencer, E., “A method of analysis of the stability of embankments assuming parallel inter-slice force”, Geotechnique, Vol. 17, pp.11-26, 1967.
〔47〕 ISRM, “Suggested methods for the quantitative description of discontinuities in rock masses”, International journal of rock mechanics and mining sciences & geomechanics abstracts, Vol. 15, pp. 319-368 , 1978.
〔48〕 Tzamos, S., Sofianos, A. I., “A correlation of four rock mass classification systems through their fabric indices”, International Journal of Rock Mechanics & Mining Sciences, Vol. 44, pp. 477-495, 2007.
〔49〕 中興工程顧問股份有限公司,「大甲溪發電廠谷關分廠復建工程細部設計圖」,台灣電力公司,民國92年。
〔50〕 中興工程顧問股份有限公司,「大甲溪發電廠谷關分廠復建工程技術服務工作服務建議書」,台灣電力公司,民國98年。
〔51〕 Douglas, K. J., “The shear strength of rock masses“, Ph.D. Thesis, University of New South Wales, Australia, 2002.
〔52〕 Taheri, A., Tani, K., “Assessment of the stability of rock slopes by the slope Stability Rating Classification System”, Rock mechanics and rock engineering, Vol. 43, pp. 321-333, 2010.
〔53〕 Sonmez, H., Ulusay, R., “Modifications to the geological strength index (GSI) and their applicability to stability of slopes”, International Journal of Rock Mechanics & Mining Sciences, Vol. 36, 743-760, 1999.
〔54〕 Brideau, M. A., Stead, D., Roots, C., Orwin, J., “Geomorphology and engineering grology of a landslide in ultramafic rocks, Dawson City, Yukon”, Engineering Geology, Vol. 89, 170-194, 2007.
〔55〕 Marinos, P., Hoek, E., “GSI:a geologically friendly tool for rock mass strength estimation”, Proceeding GeoEng2000 Conference, Melbourne, 2000.
〔56〕 楊哲銘,「非線性破壞準則之臨界楔模型」,國立中央大學應用地質研究所,碩士論文,民國98年。
〔57〕 Edelbro, C., “Rock mass strength: A review”, Lulea University of Technology, Department of Civil Environmental Engineering, technical report, 2003.
〔58〕 Palmstrom, A., “RMi—a rock mass characterization system for rock engineering purposes”, Ph. D. thesis, University of Oslo, Norway, 400, 1995.
〔59〕 羅偉、楊昭男,五萬分之一地質圖幅及說明書(霧社,圖幅第二十六號),經濟部中央地質調查所,台北市,民國82年。
〔60〕 網路資料:經濟部中央地質調查所:集水區地形及地質資料庫,民國99年,取自http://gwh.moeacgs.gov.tw/gwh/gsb97-2/sys9/。
〔61〕 陳培源,台灣地質,初版,科技圖書,台北市,民國95年。
〔62〕 網路資料:李錦發、魏正岳、李彥良:大甲溪流域坡地地質災害特性研究,民國95年,取自http://gwh.moeacgs.gov.tw。
指導教授 李錫堤、董家鈞
(Chyi-tyi Lee、Jia-jyun Dong)
審核日期 2011-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明