博碩士論文 972204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.144.17.45
姓名 張明雯(Ming-Wen Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 自然殺手細胞經NKG2D/NCR訊息傳遞路徑直接毒殺Mycobacterium kansasii
(Direct killing of Mycobacterium kansasii by NK cells via NKG2D / NCR-dependent signaling pathway)
相關論文
★ 探討長QT症候群誘發心律不整時β-腎上腺素刺激所扮演的角色並找出抗心律不整的治療標的:理論的研究★ 針對因 L 型鈣離子通道突變而造成的 QT 間期縮短與 Brugada 症候群之模擬
★ IK1減量調節而產生自發性動作電位的電生理特性探討:電腦模型的模擬研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自然殺手細胞在宿主先天免疫防禦系統中,扮演了很重要的角色。目前已知其主要的功能為殺死腫瘤細胞或被病毒感染的宿主細胞。然而,自然殺手細胞是否能直接殺死微生物仍然所知甚少。以往的研究顯示,自然殺手細胞可以使用細胞毒性蛋白,例如穿孔素和顆粒溶素直接殺死新型隱球菌-一個致病的酵母菌。因為堪薩斯分枝桿菌所造成的慢性肺部感染與結核分枝桿菌所造成的肺結核相似,本研究中,利用此菌作為研究對象,我探討並發現人類自然殺手細胞株,NK92細胞具有殺死致病細菌-堪薩斯分枝桿菌之現象。進一步研究其毒殺的機制得知,此致死作用是藉由NK92細胞與堪薩斯分枝桿菌的直接接觸所造成。穿孔素和顆粒溶素在其中扮演重要角色,且其中作用的機制是通過活化NKG2D/NCRs, ERK,JNK及p38 MAPK的訊息傳遞路徑所進行。
摘要(英) Natural killer (NK) cells play a pivotal role in the effector arm of host innate immunity defense system. The major functions of NK cells in killing tumor cells or virus-infected host cells were well established. However, whether NK cells can directly kill microbes remains poorly understood. Previous studies have shown that NK cells can use the cytolytic proteins, perforin and granulysin to directly kill the yeast pathogen Cryptococcus neoformans. In this study, using the pathogenic mycobacterium Mycobacterium kansasii which causes a chronic pulmonary infection resembling pulmonary tuberculosis as the study model, I showed that human NK-92 cells directly kill mycobacterium. Killing of M. kansasii by NK92 cells is contact dependent. NK cells use the cytolytic proteins, perforin and granulysin for direct killing, and the underlying killing mechanism is through NKG2D/NCRs, ERK, JNK and p38 MAPK signaling pathways.
關鍵字(中) ★ 訊息傳遞路徑
★ 堪薩斯分枝桿菌
★ 自然殺手細胞
關鍵字(英) ★ signaling pathway
★ Mycobacterium kansasii
★ Natural killer cells
論文目次 Table of Contents
中文摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1-1 Non-tuberculous mycobacteria 1
1-1.1 Mycobacterium kansasii 2
1-2 The immune system 2
1-3 NK cells biology 3
1-3.1 Activating and inhibitory receptors of NK cells 4
1-3.2 Signalings controlling the NK cells cytotoxicity 6
1-3.3 Cytotoxic proteins of NK cells 6
1-4 Specific aims 7
Chapter 2 Materials and Methods 9
2-1 Cell line and cell culture 9
2-2 Preparation of M. kansasii 9
2-3 Chemical reagents 10
2-4 Antibodies 10
2-5 RNA extraction and reverse transcription (RT)-PCR 10
2-6 Preparation of protein lysate and immunoblot analysis 12
2-7 Transwell assay 12
2-8 Knock-down of mRNA by siRNA and siRNA transfection 13
2-9 M. kansasii killing by NK92 cells 13
Chapter 3 Results 15
3-1 NK92 cells possess anti- M. kansasii activity 15
3-2 NK92 cells kill M. kansasii and direct contact is essential 15
3-3 NK92 cells requires cytotoxic granules to kill M. kansasii 17
3-4 M. kansasii enhances NKG2D, NKp44 and NKp46 expression 18
3-5 Inhibition of MAP Kinases activity reduces perforin and granulysin production and killing efficacy 18
3-6 Perforin involves killing of M. kansasii 19
3.7 Granulysin also involved M. kansasii killing 20
Chapter 4 Discussion 21
Chapter 5 Reference 25
參考文獻 1. Jarzembowski, J. A., and M. B. Young. 2008. Nontuberculous mycobacterial infections. Arch Pathol Lab Med 132:1333-1341.
2. Guerardel, Y., E. Maes, V. Briken, F. Chirat, Y. Leroy, C. Locht, G. Strecker, and L. Kremer. 2003. Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and apoptosis-inducing properties. J Biol Chem 278:36637-36651.
3. Ting-Shu Wu 2, Chia-Chen Lu 1 and Hsin-Chih Lai 1. 2009. Current Situations on Identification of Nontuberculous Mycobacteria J Biomed Lab Sci 21:6.
4. Ellis, S. M. 2004. The spectrum of tuberculosis and non-tuberculous mycobacterial infection. Eur Radiol 14 Suppl 3:E34-42.
5. Razavi, B., and M. G. Cleveland. 2000. Cutaneous infection due to Mycobacterium kansasii. Diagn Microbiol Infect Dis 38:173-175.
6. 1994-2010. Mycobacterium Kansasii.
7. Wolinsky, E. 1992. Mycobacterial diseases other than tuberculosis. Clin Infect Dis 15:1-10.
8. Koneman EW, Allen SD, and J. WM. 1992. Mycobacteria. In: Color atlas and textbook of diagnostic microbiology. JB Lippincott, Philadelphia.
9. Wu, T. S., H. S. Leu, C. H. Chiu, M. H. Lee, P. C. Chiang, T. L. Wu, J. H. Chia, L. H. Su, A. J. Kuo, and H. C. Lai. 2009. Clinical manifestations, antibiotic susceptibility and molecular analysis of Mycobacterium kansasii isolates from a university hospital in Taiwan. J Antimicrob Chemother 64:511-514.
10. Chaplin, D. D. Overview of the immune response. J Allergy Clin Immunol 125:S3-23.
11. Medzhitov, R., and C. Janeway, Jr. 2000. Innate immunity. N Engl J Med 343:338-344.
12. Bonilla, F. A., and H. C. Oettgen. Adaptive immunity. J Allergy Clin Immunol 125:S33-40.
13. Cooper, M. A., and W. M. Yokoyama. Memory-like responses of natural killer cells. Immunol Rev 235:297-305.
14. Freud, A. G., and M. A. Caligiuri. 2006. Human natural killer cell development. Immunol Rev 214:56-72.
15. Strowig, T., F. Brilot, and C. Munz. 2008. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J Immunol 180:7785-7791.
16. Gong, J. H., G. Maki, and H. G. Klingemann. 1994. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8:652-658.
17. Huntington, N. D., C. A. Vosshenrich, and J. P. Di Santo. 2007. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703-714.
18. Lodoen, M. B., and L. L. Lanier. 2005. Viral modulation of NK cell immunity. Nat Rev Microbiol 3:59-69.
19. Backstrom, E., K. Kristensson, and H. G. Ljunggren. 2004. Activation of natural killer cells: underlying molecular mechanisms revealed. Scand J Immunol 60:14-22.
20. Smyth, M. J., E. Cretney, J. M. Kelly, J. A. Westwood, S. E. Street, H. Yagita, K. Takeda, S. L. van Dommelen, M. A. Degli-Esposti, and Y. Hayakawa. 2005. Activation of NK cell cytotoxicity. Mol Immunol 42:501-510.
21. Wiseman, J. C., L. L. Ma, K. J. Marr, G. J. Jones, and C. H. Mody. 2007. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J Immunol 178:6456-6464.
22. Lanier, L. L. 2005. NK cell recognition. Annu Rev Immunol 23:225-274.
23. Smyth, M. J., Y. Hayakawa, K. Takeda, and H. Yagita. 2002. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850-861.
24. Sivori, S., M. Vitale, L. Morelli, L. Sanseverino, R. Augugliaro, C. Bottino, L. Moretta, and A. Moretta. 1997. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129-1136.
25. Pende, D., S. Parolini, A. Pessino, S. Sivori, R. Augugliaro, L. Morelli, E. Marcenaro, L. Accame, A. Malaspina, R. Biassoni, C. Bottino, L. Moretta, and A. Moretta. 1999. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505-1516.
26. Cantoni, C., C. Bottino, M. Vitale, A. Pessino, R. Augugliaro, A. Malaspina, S. Parolini, L. Moretta, A. Moretta, and R. Biassoni. 1999. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 189:787-796.
27. Vitale, M., C. Bottino, S. Sivori, L. Sanseverino, R. Castriconi, E. Marcenaro, R. Augugliaro, L. Moretta, and A. Moretta. 1998. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065-2072.
28. Moretta, A., C. Bottino, M. Vitale, D. Pende, C. Cantoni, M. C. Mingari, R. Biassoni, and L. Moretta. 2001. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197-223.
29. Moretta, L., and A. Moretta. 2004. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255-259.
30. Maroof, A., L. Beattie, S. Zubairi, M. Svensson, S. Stager, and P. M. Kaye. 2008. Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29:295-305.
31. Ma, L. L., C. L. Wang, G. G. Neely, S. Epelman, A. M. Krensky, and C. H. Mody. 2004. NK cells use perforin rather than granulysin for anticryptococcal activity. J Immunol 173:3357-3365.
32. Biron, C. A., K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189-220.
33. Vivier, E., J. A. Nunes, and F. Vely. 2004. Natural killer cell signaling pathways. Science 306:1517-1519.
34. Salih, H. R., H. Antropius, F. Gieseke, S. Z. Lutz, L. Kanz, H. G. Rammensee, and A. Steinle. 2003. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389-1396.
35. Cosman, D., J. Mullberg, C. L. Sutherland, W. Chin, R. Armitage, W. Fanslow, M. Kubin, and N. J. Chalupny. 2001. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123-133.
36. Djeu, J. Y., K. Jiang, and S. Wei. 2002. A view to a kill: signals triggering cytotoxicity. Clin Cancer Res 8:636-640.
37. Leibson, P. J. 1997. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity 6:655-661.
38. Wu, J., Y. Song, A. B. Bakker, S. Bauer, T. Spies, L. L. Lanier, and J. H. Phillips. 1999. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730-732.
39. Lanier, L. L. 2008. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495-502.
40. Wei, S., A. M. Gamero, J. H. Liu, A. A. Daulton, N. I. Valkov, J. A. Trapani, A. C. Larner, M. J. Weber, and J. Y. Djeu. 1998. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J Exp Med 187:1753-1765.
41. Kumar, D., J. Hosse, C. von Toerne, E. Noessner, and P. J. Nelson. 2009. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. J Immunol 182:1011-1020.
42. Trotta, R., K. Fettucciari, L. Azzoni, B. Abebe, K. A. Puorro, L. C. Eisenlohr, and B. Perussia. 2000. Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol 165:1782-1789.
43. Jiang, K., B. Zhong, D. L. Gilvary, B. C. Corliss, E. Hong-Geller, S. Wei, and J. Y. Djeu. 2000. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1:419-425.
44. Chen, X., P. P. Trivedi, B. Ge, K. Krzewski, and J. L. Strominger. 2007. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci U S A 104:6329-6334.
45. Trapani, J. A., and M. J. Smyth. 2002. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735-747.
46. Lowin, B., M. C. Peitsch, and J. Tschopp. 1995. Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr Top Microbiol Immunol 198:1-24.
47. Uellner, R., M. J. Zvelebil, J. Hopkins, J. Jones, L. K. MacDougall, B. P. Morgan, E. Podack, M. D. Waterfield, and G. M. Griffiths. 1997. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 16:7287-7296.
48. Shi, L., R. P. Kraut, R. Aebersold, and A. H. Greenberg. 1992. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175:553-566.
49. Quan, P. C., T. Ishizaka, and B. R. Bloom. 1982. Studies on the mechanism of NK cell lysis. J Immunol 128:1786-1791.
50. Neighbour, P. A., and H. S. Huberman. 1982. Sr++-induced inhibition of human natural killer (NK) cell-mediated cytotoxicity. J Immunol 128:1236-1240.
51. Lu, C. C., and J. K. Chen. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J Cell Physiol 223:343-351.
52. Shitrit, D., R. Priess, N. Peled, G. Bishara, D. Shlomi, and M. R. Kramer. 2007. Differentiation of Mycobacterium kansasii infection from Mycobacterium tuberculosis infection: comparison of clinical features, radiological appearance, and outcome. Eur J Clin Microbiol Infect Dis 26:679-684.
53. Wieland, C. W., S. Florquin, J. M. Pater, S. Weijer, and T. van der Poll. 2006. CD4+ cells play a limited role in murine lung infection with Mycobacterium kansasii. Am J Respir Cell Mol Biol 34:167-173.
54. Clayberger, C., and A. M. Krensky. 2003. Granulysin. Curr Opin Immunol 15:560-565.
55. Stenger, S., D. A. Hanson, R. Teitelbaum, P. Dewan, K. R. Niazi, C. J. Froelich, T. Ganz, S. Thoma-Uszynski, A. Melian, C. Bogdan, S. A. Porcelli, B. R. Bloom, A. M. Krensky, and R. L. Modlin. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121-125.
56. Ljunggren, H. G., and K. J. Malmberg. 2007. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329-339.
57. Esin, S., G. Batoni, C. Counoupas, A. Stringaro, F. L. Brancatisano, M. Colone, G. Maisetta, W. Florio, G. Arancia, and M. Campa. 2008. Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun 76:1719-1727.
指導教授 宋瑞珍(Ruey-Jen Sung) 審核日期 2011-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明