博碩士論文 962404007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.146.178.230
姓名 陳順佳(Shun-Jia Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討酵母菌GlyRS基因的表現及功能
(Study of the expression and function of yeast GlyRS genes)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 之前的研究發現釀酒酵母中ALA1及GRS1基因都是使用non-AUG起始密碼轉譯出各自的粒線體型蛋白質。我們實驗室研究發現non-AUG轉譯起始效率大約是AUG的三分之一或更少,而且周邊序列對non-AUG的轉譯效率影響也較對AUG大,除此之外,也發現最好的周邊序列是AAA (-3到-1核甘酸)。重複的non-AUG起始密碼(如ACGACG)通常能增加轉譯的效率;但某些重複的non-AUG起始密碼(如GUGGUG)會使周邊序列變差(尤其是-3核甘酸),則其轉譯效率反而變差。另一個重大發現是:絕大部分酵母菌都只含有一個glycyl-tRNA synthetase (GlyRS)基因(稱做GRS1),但是S. cerevisiae及V. polyspora卻有兩個相異的GlyRS基因(稱做GRS1及GRS2)。研究結果顯示:所有的酵母菌GRS1基因都是雙功能的,能同時做出細胞質及粒線體的GlyRS異構型,但是GRS2基因卻是非必需的。然而最令人驚奇的是:GRS2基因雖然在正常培養條件下不表現,它卻可以被一些逆境條件誘導表現,例如鹼性培養基(pH 8.0)或高溫生長條件(37°C),且純化出來的GlyRS2蛋白質具有相當程度的胺醯化活性。在正常(30°C)及高溫條件下(37°C) GlyRS1與GlyRS2的穩定度都相當高,且在特定高溫條件下GRS2可以互補GRS1的剔除株,維持其正常生長。也許被誘導出來的GlyRS2在某些條件下可以取代GlyRS1的功能,另一種可能性則是GlyRS2參與其它代謝機制。
摘要(英) Previous studies showed that ALA1 and GRS1 of Saccharomyces cerevisiae can initiate translation of their respective mitochondrial forms from a non-AUG codon. Our results showed that the translation efficiency of non-AUG initiation is about 30% (or less) relative to that of AUG initiation. In addition, it appeared that a non-AUG initiator codon is much more sensitive to its sequence context than is an AUG initiator codon, and AAA (the nucleotides at position -3 to -1 relative to the initiator) is the most favorable sequence context. Moreover, redundancy of non-AUG initiators, for instance ACGACG, significantly increased the translational efficiency. However, some redundant non-AUG initiators such as UUGUUG that have a poor sequence context (especially at position -3 relative to the second UUG codon), reduced the efficiency of translation. Another interesting discovery reported here was that the majority of yeast species possess a single glycyl-tRNA synthetase (GlyRS) gene (named GRS1). In contrast, S. cerevisiae and Vanderwaltozyma polyspora possessed two GlyRS genes (named GRS1 and GRS2). In all cases, GRS1 was dual-functional, because it encodes both cytoplasmic and mitochondrial forms of GlyRS. In contrast, GRS2 was pseudogene-like and dispensable for growth. Surprisingly, while GRS2 was silent under normal growth conditions (30°C), its expression was induced by certain stresses such as high temperature (37°C) and high external pH (pH 8.0). In addition, purified recombinant GlyRS2 retained a substantial level of aminoacylation activity. Both GlyRS1 and GlyRS2 were appreciably stable in vivo. When overexpressed, the GRS2 gene could rescue the growth defect of a GRS1 knockout strain. Altogether, these data suggest that GRS2 may function to substitute for GRS1 under certain circumstances. Alternatively, it may be involved in other as-yet-unidentified metabolic pathways.
關鍵字(中) 關鍵字(英) ★ aminoacyl-tRNA synthetase
★ inducible gene
★ sequence context
★ aminoacylation
論文目次 Table of contents
中文摘要 i
Abstract ii
誌謝辭 iii
Table of contents iV
List of Figures Vi
Overall introduction 1
Chapter I Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast 4
Abstract 5
Introduction 6
Experimental procedures 9
Results 12
Discussion 18
Chapter II Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation 23
Abstract 24
Introduction 25
Experimental procedures 28
Results 32
Disscusion 40
Chapter III Vanderwaltozyma polyspora possesses a housekeeping and an inducible glycyl-tRNA synthetase gene 45
Abstract 46
Introduction 47
Experimental procedures 48
Results 52
Discussion 59
Summary 63
Reference 64
Figures 70
List of Figures
Figure 1. The 5’-end sequence of GRS1. 70
Figure 2. Assay of protein expression patterns by Western blots. 71
Figure 3. Screening for important flanking sequences. 73
Figure 4. Effect of sequence context on the native TTG initiator. 75
Figure 5. Effect of sequence context on ATG and non-ATG initiators. 78
Figure 6. Context effect determined using lacZ as a reporter. 79
Figure 7. Efficiencies of translation initiation from various redundant and single non-AUG initiation codons. 82
Figure 8. Effect of the penultimate amino-terminal residue on the turnover of AlaRS-LexA fusions. 85
Figure 9. Efficiencies of translation initiation from various combinations of non-AUG initiation codons. 86
Figure 10. Effect of the nucleotide at position -3 on non-AUG initiation. 88
Figure 11. Efficiency of translation initiation from three successive ACG codons. 89
Figure 12. Efficiency of translation initiation from non-successive ACG codons. 91
Figure 13. Functional substitution of ATG1 of VAS1 with redundant GTG codons. 92
Figure 14. Comparison of yeast GlyRS1 and GlyRS2. 94
Figure 15. Cross-species complementation assays for yeast GlyRS genes. 95
Figure 16. Complementation assays for yeast GRS2 genes cloned into pADH. 97
Figure 17. Mapping the translation initiator codons of various yeast GlyRS genes. 100
Figure 18. Relative mRNA expression of GRS1 and GRS2 in Vanderwaltozyma polyspora and Saccharomyces cerevisiae. 102
Figure 19. Complementation assays for yeast GRS1 and GRS2 genes. 104
Figure 20. Protein stability assay for GlyRSs in vivo. 106
Figure 21. Aminoacylation assay for ScGlyRS1 and ScGlyRS2. 107
Figure 22. Aminoacylation assay for VpGlyRS1 and VpGlyRS2. 108
Figure 23. Aminoacylation assay at different temperatures. 109
Figure 24. Phylogenetic analysis of α2-dimeric GlyRS proteins. 111
參考文獻 Reference
1. Carter, C. W. Jr. (1993) Annu. Rev. Biochem. 62, 715-748
2. Martinis, S. A., and Schimmel, P. (1996) in Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
3. Giegé, R., Sissler, M., and Florentz, C. (1998) Nucleic Acids Res. 26, 5017-5035
4. Pelchat, M., and Lapointe, J. (1999) Biochem. Cell. Biol. 77, 343-347
5. Chatton, B., Walter, P., Ebel, J.-P., Lacroute, F., and Fasiolo, F. (1988) J. Biol. Chem. 263, 52-57
6. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) Cell 46, 235-243
7. Turner, R. J., Lovato, M., and Schimmel, P. (2000) J. Biol. Chem. 275, 27681-27688
8. Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Cell 20, 215-222
9. Kozak, M. (1989) Mol. Cell. Biol. 9, 5073-5080
10. Kozak, M. (1991) J. Biol. Chem. 266, 19867-19870
11. Pisarev, A. V., Kolupaeva, V. G., Pisareva, V. P., Merrick, W. C., Hellen, C. U.T., and Pestova, T. V. (2006) Genes Dev. 20, 624-636
12. Cigan, A. M., and Donahue, T. F. (1987) Gene 59, 1-18
13. Baim, S. B., and Sherman, F. (1988) Mol. Cell. Biol. 8, 1591-1601
14. Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mol. Cell. Biol. 8, 2964-2975
15. Zitomer, R. S., Walthall, D. A., Rymond, B. C., and Hollenberg, C. P. (1984) Mol. Cell. Biol. 4, 1191-1197
16. Clements, J. M., Laz, T. M., and Sherman, F. (1988) Mol. Cell. Biol. 8, 4533-4536
17. Chang, K. J., and Wang, C. C. (2004) J. Biol. Chem. 279, 13778-13785
18. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) J. Biol. Chem. 279, 49656-49663
19. Abramczyk, D., Tchorzewski, M., and Grankowski, N. (2003) Yeast 20, 1045-1052
20. Gazeau, M., Delort, F., Fromant, M., Dessen, P., Blanquet, S., and Plateau, P. (1992) J. Mol. Biol. 241, 378-389
21. Leveque, F., Gazeau, M., Fromant, M., Blanquet, S., and Plateau, P. (1991) J. Bacteriol. 173, 7903-7910
22. Bochner, B. R., Lee, P. C., Wilson, S. W., Cutler, C. W., and Ames, B. N. (1984) Cell 37, 225-232
23. Bochner, B. R., Zylicz, M., and Georgopoulos, C. (1986) J. Bacteriol. 168, 931-935
24. Fuge, E. K., and Farr, S. B. (1993) J. Bacteriol. 175, 2321-2326
25. Brevet, A., Chen, J., Leveque, F., Plateau, P., and Blanquet, S. (1989) Proc. Natl. Acad. Sci. USA 89, 8275-8279
26. Theoclitou, M. -E., E-Thaher, T. S. H., and Miller, A. D. (1994) J. Chem. Soc. Chem. Commun. 5, 659-661
27. Dietrich, A., Weil, J. H., and Maréchal-Drouard, L (1992) Annu. Rev. Cell. Biol. 8, 115-131
28. Wang, C. C., Chang, K. J., Tang, H. L., Hsieh, C. J., and Schimmel, P. (2003) Biochemistry 42, 1646-1651
29. Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Eur. J. Biochem. 266, 848-854
30. Huang, H. Y., Kuei, Y., Chao, H. Y., Chen, S. J., Yeh, L. S., and Wang, C. C. (2006) J. Biol. Chem. 281, 31430-31439
31. Unbehaun, A., Borukhov, S. I., Hellen, C. U., and Pestova, T. V. (2004) Genes Dev. 18, 3078-3093
32. Cheung, Y. N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. G. (2007) Genes Dev. 21, 1217-1230
33. Kozak, M. (1990) Proc. Natl. Acad. Sci. USA 87, 8301-8305
34. Chang, K. J., Lin, G., Men, L. C., and Wang, C. C. (2006) J. Biol. Chem. 281, 7775-7783
35. Sikorski, R. S., and Hieter, P. (1989) Genetics, 122, 19-27
36. Bennetzen, J. L., and Hall, B. D. (1982) J. Biol. Chem. 257, 3018-3025
37. Kozak, M. (1999) Gene 234, 187-208
38. Huang, H. Y., Tang, H. L., Chao, H. Y., Yeh, L. S., and Wang, C. C. (2006) Mol. Microbiol. 60, 189-198
39. Slusher, L. B., Gillman, E. C., Martin, N. C., and Hopper, A. K. (1991) Proc. Natl. Acad. Sci. USA 88, 9789-9793
40. Wolfe, C. L., Lou, Y. C., Hopper, A. K., and Martin, N. C. (1994) J. Biol. Chem. 269, 13361-13366
41. Acland, P., Dixon, M., Peters, G., and Dickson, C. (1990) Nature 343, 662-665
42. Saris, C. J., Domen, J., and Berns, A. (1991) EMBO J. 10, 655-664
43. Hann, S. R., Sloan-Brown, K., and Spotts, G. D. (1992) Genes Dev. 6, 1229-1240
44. Packham, G., Brimmell, M., and Cleveland, J. L. (1997) Biochem. J. 328, 807-813
45. Riechmann, I. L., Ito, T., and Meyerowitz, E. M. (1999) Mol. Cell Biol. 19, 8505-8512
46. Sadler, R., Wu, L., Forghani, B., Renne, R., Zhong, W., Herndier, B., and Ganem, D. (1999) J. Viol. 73, 5722-5730
47. Yoon, H., and Donahue, T, F. (1992) Mol. Microbiol. 6, 1413-1419
48. Huang, S., Elliott, R. C., Liu, P. S., Koduri, R. K., Weickmann, J. L., Lee, J. H., Blair, L. C., Ghosh-Dastidar, P., Bradshaw, R. A., Bryan, K. M., Einarson, B., Kendall, R. L., Kolacz, K. H., and Saito, K. (1987) Biochemistry 26, 8242-8246
49. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A., and Sherman, F. (1999) EMBO J. 21, 6155-6168
50. Chen, S. J., Lin, G., Chang, K. J., Yeh, L. S., and Wang, C. C. (2008) J. Biol. Chem. 283, 3173-3180
51. Chen, S., Vetro, J. A., and Chang, Y. H. (2002) Arch. Biochem. Biophys. 398, 87-93
52. Varshavsky, A. (1996) Proc. Natl. Acad. Sci. USA 93, 12142-12149
53. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990) Nature 347, 203-206
54. Schimmel, P. (1987) Annu. Rev. Biochem. 56, 125-158
55. Ibba, M., Morgan, S., Curnow, A. W., Pridmore, D. R., Vothknecht, U. C., Gardner, W., Lin, W., Woese, C. R., and Söll, D. (1997) Science 278, 1119-1122
56. Ostrem, D. L., and Berg, P. (1970) Proc. Natl. Acad. Sci. USA 67, 1967-1974
57. Shiba, K., Schimmel, P., Motegi, H., and Noda, T. (1994) J. Biol. Chem. 269, 30049-30055
58. Nada, S., Chang, P. K., and Dignam, J. D. (1993) J. Biol. Chem. 268, 7660-7667
59. Kohli, J., Kwong, T., Altruda, F., Soll, D., and Wahl, G. (1979) J. Biol. Chem. 254, 1546-1551
60. Chen, S. J., Ko, C. Y., Yen, C. W., and Wang, C. C. (2009) J. Biol. Chem. 284, 818-827
61. Fersht, A. R., Ashford, J. S., Bruton, C. J., Jakes, R., Koch, G. L., and Hartley, B. S. (1975) Biochemistry 14, 1-4
62. Saitou, N., and Nei, M. (1987) Mol. Biol. Evol. 4, 406-425
63. Mirande, M. (1991) Prog. Nucleic Acid Res. Mol. Biol. 40, 95-142
64. Wang, C. C., and Schimmel, P. (1999) J. Biol. Chem. 274, 16508-16512
65. Wang, C. C., Morales, A. J., and Schimmel, P. (2000) J. Biol. Chem. 275, 17180-17186
66. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) J. Biol. Chem. 283, 30699-30706
67. Kaminska, M., Deniziak, M., Kerjan, P., Barciszewski, J., and Mirande, M. (2000) EMBO J. 19, 6908-6917
68. Kaminska, M., Shalak, V., and Mirande, M. (2001) Biochemistry 40, 14309-14316
69. Francin, M., Kaminska, M., Kerjan, P., and Mirande, M. (2002) J. Biol. Chem. 277, 1762-1769
70. Francin, M., and Mirande, M. (2006) Biochemistry 45, 10153-10160
71. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) EMBO J. 15, 5437-5448
72. Godinic, V., Mocibob, M., Rocak, S., Ibba, M., and Weygand-Durasevic, I. (2007) FEBS. J. 274, 2788-2799
73. Clark, R. L., and Neidhardt, F. C. (1990) J. Bacteriol. 172, 3237-3243
74. Kawakami, K., Ito, K., and Nakamura, Y. (1992) Mol. Microbiol. 6, 1739-1745
75. Guo, R. T., Chong, Y. E., Guo, M., and Yang, X. L. (2009) J. Biol. Chem. 284, 28968-28976
76. Varshavsky, A. (1983) Cell 34, 711-712
77. Maréchal-Drouard, L., Small, I., Weil, J. H., and Dietrich, A. (1995) Meth. Enzymol. 260, 310-327
78. Duchene, A. M., Peters, N., Dietrich, A., Cosset, A., Small, I., and Wintz, H. (2001) J. Biol. Chem. 276, 15275-15283
79. Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giegé, R., and Kern, D. (1996) Eur. J. Biochem. 241, 814-826
80. Logan, D. T., Mazauric, M. H., Kern, D., and Moras, D. (1995) EMBO J. 14, 4156-4167
81. Chiu, W. C., Chang, C. P., Wen, W. L., Wang, S. W., and Wang, C. C. (2010) Mol. Biol. Evol. 27, 1415-1424
82. Chiu, W. C., Chang, C. P., and Wang, C. C. (2009) J. Biol. Chem. 284, 23954-23960
83. Brown, J. R., and Doolittle, W. F. (1997) Microbiol. Mol. Biol. Rev. 61, 456-502
84. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-4680
指導教授 王健家(Chien-Chia Wang) 審核日期 2011-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明