博碩士論文 972206057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.119.102.137
姓名 詹偉平(Wei-ping Chan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
(Study of external cavity VBG-feedback laser using semiconductor tapered amplifier as the gain medium)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器
★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究★ 穩態紅外線LED封裝熱阻量測
★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究★ 鎖相熱影像檢測法用以檢測材料內部缺陷
★ 光聲影像顯微術之研究★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬
★ 基於純量繞射理論以遠場聲場重建光聲影像之研究★ 基於光聲訊號之三維資訊重建
★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究★ 紅外線穩態熱阻量測法之石墨層影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要說明可調式的藍紫光雷射系統及利用感光材料製做體積全像布拉格光柵(Volume Bragg Grating, VBG)的技術,首先介紹目前氬離子雷射(波長為488 nm)的應用,而在實驗上引入利用窄化藍紫光半導體雷射頻寬和用紅外光半導體雷射搭配倍頻晶體來將紅外光波長轉換至可見光波段來取代氬離子雷射的構想。
本實驗我們架設兩種半導體雷射系統架構:一種為藍紫光半導體雷射(波長為405 nm)搭配體積全像布拉格光柵(VBG)作為其線型外腔式共振腔的反射鏡;另一種則使用半導體雷射錐形放大器(Tapered amplifier) 做為光源,利用可同時修正雷射的模態且可將輸出功率放大的特性搭配體積全像布拉格光柵(作為其線型外腔式共振腔和V型外腔式共振腔反射鏡)來改善我們所使用的雷射光學品質,其中所架設V型外腔式共振腔以繞射中心波長比輸出波長還長的VBG同時作為波長選擇及橫向模態選擇器,並以一介電平面鏡做為共振腔的反射鏡,架設依改變頂角大小來選擇波長機制的可調式波長系統。
目前常見的可調式雷射系統所應用的元件,由於其元件需同時達到調變雷射波長及模態選擇,卻必須提高整體系統的損耗,故本論文使用體積全像布拉格光柵這光學元件並嘗試用感光高分子材料(PQ:PMMA)搭配Two-beam interference架設來製作此光學元件。
再來使用不同的光學儀器量測各架設下雷射的特性,藉由光譜儀及Fabry-Perot干涉儀量測可得窄頻寬的藍紫光半導體雷射(FWHM~0.13 pm)且功率約為106.2 mW輸出,而可調變紅外光雷射系統可調波長範圍大約37 nm~38 nm(FWHM~30 pm),以PQ:PMMA製作其VBG繞射光譜頻寬約5.1 nm,其繞射效率約38.21%。
摘要(英) This research explained the blue-violet light tunable laser systems and use the photographic material to make the volume holographic grating (Volume Bragg Grating, VBG) . First, current applications for argon ion laser (488 nm wavelength) were introduced. The infrared laser diode and nonlinear crystal are used together to convert infrared light to visible light for replacing argon ion laser .
In this thesis, we demonstrated two semiconductor laser systems setup: one for the blue-violet semiconductor laser (wavelength for 405 nm) using a volume holographic Bragg grating (VBG) as linear external cavity mirror;the other uses the tapered amplifier for light source. The laser can correct the mode and amplify the output power with a volume holographic grating (as linear external cavity and V-cavity external cavity mirrors) to improve the laser optics. The V-cavity external cavity uses VBG with the central wavelength longer than the output wavelength to select the wavelength and transverse mode and using the dielectric mirror as a cavity mirror. The wavelength tunable system is set up using the changes in the angle for wavelength selection.
A typical application of tunable laser systems requires modulated laser wavelength and transverse mode, but this will increase the system loss at the same time. Therefore, this thesis shows the use of light-sensitive polymer (PQ:PMMA) to make volume holographic Bragg grating with Two-beam interference.
Using different instruments to measure the laser characteristics, we observed the narrowed bandwidth of the blue-violet semiconductor laser (FWHM ~ 0.13 pm, output power~106.2 mW) with spectroscopy and Fabry-Perot interferometer. The tunable infrared laser system has a tuning range of approximately 37 nm ~ 38 nm (FWHM ~ 30 pm). PQ:PMMA is used to make the VBG of diffraction spectrum bandwidth of 5.1 nm and diffraction efficiency roughly 38.21%.
關鍵字(中) ★ 感光高分子材料
★ 錐形放大器
★ 體積全像布拉格光柵
★ 外腔式共振腔
關鍵字(英) ★ Tapered amplifier
★ external cavity
★ Volume Bragg grating
★ PQ:PMMA
論文目次 目錄
摘要 I
Abstract II
致謝辭 IV
目錄 VI
表目錄 XI
第一章 緒論 1
1.1 實驗動機 1
1.2 可調式波長雷射系統 4
1.2.1 稜鏡(Prism) 4
1.2.2 表面式光柵(Surface grating) 6
1.3 半導體雷射簡介 8
1.4 單縱模半導體雷射 11
第二章 實驗原理 13
2.1 半導體雷射特性 13
2.1.1 半導體雷射輸出功率特性 14
2.1.2 半導體雷射輸出縱向模態特性 15
2.2 體積全像布拉格光柵原理 18
2.2.1 體積布拉格光柵構造 19
2.2.2 繞射光譜及波長調變系統 20
2.3 感光高分子光學壓克力(PQ:PMMA)特性 24
2.3.1 以PQ:PMMA製作全像布拉格光柵 25
2.3.2 檢測光彈性工作原理 27
2.4 法布里-珀羅干涉儀工作原理 29
2.5 量測M-square的工作原理 33
第三章 實驗架構與理論分析 36
3.1 線型外腔式共振腔 36
3.2 V型外腔式共振腔 40
3.3 外腔式共振腔反射鏡對於輸出特性之分析 42
3.4 Two-beam interference架設 49
第四章 數據分析 53
4.1 405 nm半導體雷射特性 53
4.1.1 線型外腔式共振腔 56
4.2 錐形放大器外腔式共振腔架設 62
4.2.1 線型外腔式共振腔 62
4.2.2 V形外腔式共振腔 70
4.3 以PQ:PMMA製作體積全像布拉格光柵 76
4.3.1 以PQ:PMMA為反射鏡之錐形放大器外腔式共振腔 80
第五章 結論及未來展望 88
5.1 結論 88
5.2 未來展望 91
Reference 92
參考文獻 Reference
1. Tanaka, T., et al., Tunable blue laser compensates for thermal expansion of the medium in holographic data storage. APPLIED OPTICS, 20070901: p. 6263~6272.
2. Sugita, T., et al., 31%-efficient blue second-harmonic generation in a periodically poled MgO : LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode. Optics Letters, 1999. 24(22): p. 1590-1592.
3. 余兆陞, 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製
程研究, in 光電科學與工程學系(DOP). 2007, 國立中央大學: 台灣.
4. Berlin. http://www.lumics.com/fileadmin/user_upload/Datasheets_Lumics_Products/OEM/LU09xxC120-C.pdf. 20091007 [cited.
5. 杜承恩, 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究, in 光電科學與工程學系(DOP). 2009, 國立中央大學: 台灣.
6. Efimov, O.M., et al., High-efficiency Bragg gratings in photothermorefractive glass. Applied Optics, 1999. 38(4): p. 619-627.
7. Venus, G.B., et al. High-brightness narrow-line laser diode source with volume Bragg-grating feedback. in High-Power Diode Laser Technology and Applications III. 2005. Bellingham, WA, USA: SPIE.
8. Hecht, E., OPTICS,4th. 2002. 101 p.
9. Em mett J. lentilucci, P.D. (20061218) Diffraction Grating Eauation with Example Problems. Volume,
10. Hawthorn, C.J., K.P. Weber, and R.E. Scholtena, Littrow configuration tunable external cavity diode laser with fixed direction output beam. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001. 72: p. 4477~4479.
11. Zhang, X.M., et al., MEMS LITTMAN TUNABLE LASER USING CURVE-SHAPED BLAZED GRATING, in The 13th International Conference on Solid-State Sensors. June 5-9, 2005: Seoul, Korea. p. 804~807.
12. SCHUBERT, E.F., LIGHT-EMITTING DIODES. 2003. 118.
13. B.R.Marx, Industrial applications of high power diode lasers in materials processing in Laser Focus World 1998. p. 104 p.
14. Paschotta, D.R. http://www.rp-photonics.com/vertical_cavity_surface_emitting_lasers.html. 2010-05-16 [cited.
15. Quimby, R.S., Photonics and Laser An Introduction. 2005. 373 p.
16. Numai, T., Fundamentals of Semiconductor Laser. 2004. 85 p.
17. Numai, T., Fundamentals of Semiconductor Laser. 2004.
18. Quimby, R.S., Photonics and Laser An Introduction. 2005. 383 p.
19. Gabor, D., A new Microscopic principle. Nature, 1948: p. 777-778.
20. Glebov, L., Volume Bragg Gratings in PTR glass – New Optical Elements for Laser Design. 2008.
21. Yua, D., et al., Holographic storage stability in PQ-PMMA bulk photopolymer Optics Communications 194, 20101101. 283(21): p. 4219-4223
22. Yariv, A., Optical waves in crystals Wiley classics library ed. 1984, Hoboken, N.J.: John Wiley and Sons. 314 p.
23. Kogelnik, H., Coupled wave theory for thick hologram grating. Bell Sys.Technol. J. 48, 1969: p. 2909-2947.
24. Hecht, E., OPTICS,4th. 2002. 348 p.
25. 張博宇, PQ:PMMA高分子全像片之製作與全像儲存的研究
in 光電工程研究所. 2006, 國立交通大學: 台灣.
26. 蕭義男, 以PQ為光吸收的感光高分子材料在全像光儲存上的製備與特性研究
in 光電工程研究所. 20000, 國立交通大學: 台灣.
27. Jose Mumbru, et al., Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials. Optics Communications 194, 2001: p. 103~108.
28. Yariv, A., Optical waves in crystals Wiley classics library ed. 1984, Hoboken, N.J.: John Wiley and Sons. 28 p.
29. Chung, T.Y., et al., Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. Optics Letters, 2006. 31(2): p. 229-231.
30. Moser, C., L. Ho, and F. Havermeyer, Single longitudinal mode blue-violet laser diode for data storage. 2005.
31. Hermann-Mitsch-Str. http://www.m2k-laser.de/products/TAL_e.htm. 2005 [cited.
32. Lucas-Leclin, G., et al., Wavelength stabilization of extended-cavity tapered lasers with volume Bragg gratings. Applied Physics B-Lasers and Optics, 2008. 91(3-4): p. 493-498.
33. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 21 p.
34. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 29 p.
35. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 67 p.
36. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 35 p.
37. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 76 p.
38. Ohtsubo, J., Semiconductor Lasers. 2004, Japan. 75 p.
39. Cerullo, G., S. Longhi, and M. Nisoli, Problems in laser physics 2001, America. 219 p.
40. Cerullo, G., S. Longhi, and M. Nisoli, Problems in laser physics 2001, America. 222 p.
指導教授 鍾德元(Te-Yuan Chung) 審核日期 2010-12-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明