博碩士論文 962202040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.237.235.148
姓名 何峻宇(Jiun-Yu Ho)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
(Adsorbate-induced restructuring in Au-Pt bimetallic nanoclusters on Al2O3/NiAl(100)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用同步輻射幅射光源激發電子能譜儀(PES)來研究吸附物引發金與白金所形成的合金奈米團簇在氧化鋁薄膜上的重構現象。在超高真空的環境下(小於 3 x 10-10) ,利用物理氣相沉積法將奈米團簇成長在完整且有序的氧化鋁薄膜 Al2O¬3/NiAl(100)上。從PES能譜圖中,當我們在120 K低溫下吸附甲醇、乙醇、環己烯時會引發金原子聚集在合金奈米團簇表面上。然而,我們發現從甲醇或是乙醇分解出來的CO會殘留在表面上並且會影響金原子的移動。
當我們把樣品升高到 650 – 800 K的退火溫度時,合金的結構已經有所改變:白金奈米粒子已經形成氧化態的結構並且在合金奈米團簇表面上覆蓋了一層 PtxAlyOz 物質和部分些許的金。之後我們在120 K吸附甲醇、乙醇這些含有OH- 官能基的分子時,我們可以發現到經過退火過程的合金奈米團簇表面上的氧化白金還原成金屬性的白金,並且和存在於表面上的金再次形成合金。相反的,當我們吸附環己烯(只有(CHn-) group) 時,並沒有類似的情形發生。
摘要(英) We have studied the adsorbate-induced restructuring of Au-Pt bimetallic nanoclusters on the well-defined θ-Al2O3/NiAl(100) by using synchrotron-based high-resolution photoemission spectroscopy (PES). The Au-Pt bimetallic clusters were vapor deposited on ordered thin film Al2O3 at 300 K. Upon adsorption of adsorbates, such as methanol, ethanol and cyclohexene, the Au atoms aggregate at the surface of clusters. However, we find that the CO from methanol (and/or ethanol) decomposition remains on the surface and block the aggregation of Au atoms.
After annealing to 650 - 800 K, the metallic Pt become oxidized Pt and the surface of clusters is coated with alumina materials; some Au are exposed at the surface. Adsorbing the hydroxyl group (-OH) such as CH3OH and C2H5OH, the annealed Au-Pt bimetallic undergo dramatic changes in chemical state—oxidized Pt is reduced to metallic Pt, and thus Pt alloys with Au again. In contrast, no substantial alternation was found in the oxidized bimetallic clusters exposed to C6H10 which had only (CHn-) group.
關鍵字(中) ★ 奈米團簇
★ 重構
★ 吸附物
★ 金
★ 白金
關鍵字(英) ★ nanocluster
★ restructuring
★ Pt
★ Adsorbate
★ Au
論文目次 Chapter 1 Introduction...................................1
Reference .................................................4
Chapter 2 Basic concepts and literature survey...........6
2.1 The properties of NiAl(100)...........................6
2.1.1 Al2O3/NiA(100)..................................8
2.1.2 Phases of Al2O3 grown on NiAl(100)..............9
2.2 Metal nanoclusters growth on the ultra-thin oxide
surface..............................................11
2.3 Literature survey for structures of Au-Pt bimetallic
nanoclusters and adsorbates induced change for other
alloy nanoclusters...................................14
Reference................................................26
Chapter 3 Introduction to the Instruments...............29
3.1 UHV system...........................................29
3.2 XPS Analysis system..................................32
3.3 X-ray Photoelectron Spectroscopy (XPS)...............33
3.4 Experimental methods.................................40
3.4.1 Sample cleaning................................40
3.4.2 Oxygen exposure and growth of Al2O3 ultra-thin
film...........................................41
3.4.3 Metal deposition on Al2O3/NiAl(100)............42
3.4.4 Adsorbate adsorption and desorption............43
Reference ................................................44
Chapter 4 Results and Discussions.......................45
4.1 The structure of pristine Au-Pt bimetallic
nanoclusters.....................................45
4.1.1 Methanol induced restructuring on Au-Pt
bimetallic nanoclusters........................49
4.1.2 Adsorbates (other than methanol) induced
restructuring in bimetallic Au-Pt nanoclusters
...............................................61
4.2 Temperature induced restructuring in bimetallic Au-Pt
nanoclusters.........................................68
4.3 The methanol induced changes in the annealed (650 -
800 K) Au-Pt bimetallic nanoclusters.................72
4.3.1 The effect of other adsorbates on annealed Au-Pt
bimetallic nanoclusters........................82
Reference................................................88
Chapter 5 Conclusions....................................90
參考文獻 Chapter 1
[1]. Theory of Atomic and Molecular Clusters; Jellinek, J., Ed.; Springer: Berlin, 1999.
[2]. Johnston, R. L. Atomic and Molecular Clusters; Taylor and Francis: London, 2002.
[3]. Baletto, F.; Ferrando, R. ReV. Mod. Phys. 2005, 77, 371
[4]. Jortner, J. Z. Phys. D 1992, 24, 247.
[5]. Johnston, R. L. Philos. Trans. R. Soc. London A 1998, 356, 211.
[6]. Andrews, M. P.; O’Brien, S. C. J. Phys. Chem. 1992, 96, 8233.
[7]. Ruban, A. V.; Skriver, H. L.; Norskov, J. K. Phys. ReV. B 1999, 59, 15990.
[8]. Bozzolo, G.; Ferrante, J.; Noebe, R. D.; Good, B.; Honecy, F. S.; Abel, P. Comput. Mater. Sci. 1999, 15, 169
[9]. Molenbroek, A. M.; Haukka, S.; Clausen, B. S. J. Phys. Chem. B 1998, 102, 10680.
[10]. Schmid, G. In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: Weinheim, 1999; Vol. 3, p 1325.
[11]. V. Johanek, N. Tsud, V. Matolin, I. Stara, Vacuum 63 (2001) 15 – 22.
[12]. S. Garbarino, A. Ponrouch, S. Pronovost, D. Guay, Electrochem Commun. 11 (2009) 1449.
[13]. L. Gan, Y. Zhang, Y. Zhao, J. Phys. Chem. C 114 (2010) 996.
[14]. A. S. Arico, A. K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172 (2001) 33.
[15]. A. Sumer, A. E. Aksoylu, J. Phys. Chem. C 113 (2009) 14329.
[16]. C. D. Pina, E. Falletta, M. Rossi, J. Catal. 260 (2008) 384.
[17]. T. Nowitzki, H. Borchert, B. Jurgens, T. Risse, V. Zielasek, M. Baumer, Chem Phys Chem 9 (2008) 729.
[18]. F. Tao et al Science 322 (2008) 932.
[19]. M. F. Luo, C. C. Wang, G. R. Hu, W. R. Lin, C. Y. Ho, Y. C. Lin, Y. J. Hsu, J. Phys. Chem. C 113 (2009) 21054.
[20]. E. Bus, J. A. Bokhoven, Phys Chem Chem Phys 9 (2007) 2894.
[21]. K. J. Kim, H. G. Ahn, Appl Catal B Env 91 (2009) 308.
[22]. W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys.Chem. C 113 (2009) 5014.
Chapter 2
[1]. Bor-Ru Sheu and D. R. Strongin, Journal of ctalysis 154 (1995) 379-390.
[2]. Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80 (1998) 2877.
[3]. N. Frèmy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003)
[4]. D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141
[5]. M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang, M. F. Luo, Surf. Sci. 600, 1942 (2006)
[6]. R. M. Jaeger, H. Kuhlenbeck, H. J. Freund, M. Wutting, W. Hoffman, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[7]. J. Libuda, F. Winkelmann, M. Baumer, H. J. Freund, T. Bertrams, H. Neddermeyer, K. Muller, Surf. Sci. 318 (1994) 61.
[8]. H. Kno¨zinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH, Weinheim (1997).
[9]. R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
[10]. N. Frèmy, V. Maurice, P. Marcus, Surf. Interface Anal. 314, 519 (2002)
[11]. R. Franchy, Surface Science Reports 38 195-294 (2004)
[12]. P. Gassmann, R. Franchy, H. Ibach, Surface Science 319 95-109 (1994)
[13]. K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b(Springer, Heidelberg, 1975).
[14]. R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396, 176 (1998)
[15]. Bell, A. T. Science 2003, 299, 1688
[16]. Rolison, D. R. Science 2003, 299, 1688
[17]. Biswas, P. Wu, C. Y. J. Air Waste Manage. Assoc. 2005, 55, 708
[18]. Valden, M. Goodman, D. W. Science 1998, 281, 1647
[19]. A. K. Santra and D.W. Goodman1, J. Phys.: Condens. Matter 14 (2002) R31–R62.
[20]. Yang Z, Goodman D W and Wu R 2000 Phys. Rev. B 61 14066
[21]. Holmblad P M, Rainer D R and Goodman D W 1997 J. Phys. Chem. 101 8883
[22]. R. Franchy, Surface Science Reports 38 (2000) 195 – 294.
[23]. A. J. Henglein, Phys. Chem. B 104 (2000) 2201.
[24]. J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, M. O. Delcourt, New J. Chem. 22 (1998) 1239.
[25]. H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C 112 (2008) 19173
[26]. Jose Yacaman, M.; Ascencio, J. A.; Liu, H. B. J. Vac. Sci. Technol.B 2001, 19, 1091.]
[27]. W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys. Chem. C 113 (2009) 5014.
[28]. S. Gottesfeld, M.T. Paffett, A. Redondo, J. Electroanal. Chem. 205 (1986) 163
[29]. K.A. Daube, M.T. Paffett, S. Gottesfeld, C.T. Campbell, J. Vac. Sci. Technol. A4 (1986) 1617
[30]. M.T. Paffett, K.A. Daube, S. Gottesfeld, C.T. Campbell, J. Electroanal. Chem. 220 (1987) 269.
[31]. K.T. Kim, J.T. Whang, Y.G. Kim, J.S. Chung, J. Electrochem. Soc. 140 (1993) 31.
[32]. Aric, A. S. ; Shukla, A.K. ; Kim, H. ; Park S. ; Min, M. ; Antonucci, V. Appl. Surf. Sci. 2001, 172,33.
[33]. Greeley, J.; Norskov, J. K.; Mavrikakis, M. Annu. ReV. Phys. Chem. 2002, 53, 319
[34]. J. Luo, P. N. Njoki, Y. lin, L. Wang, C. J. Zhong, Electrochem. Commun. 8 (2006) 581.
[35]. Y. Ma, H. Zhang, H. Zhong, T. Xu, H. Jin, X. Geng, Catal. Comun. 11 (2010) 434.
[36]. C. Mihut, C. Descorme, D. Duprez, M. D. Amiridis, J. Catal. 212 (2002) 125.
[37]. Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V. Chem. Mater. 1989, 1, 391.
[38]. Shukla, A. K.; Arico`, A. S.; El-Khatib, K. M.; Kim, H.; Antonucci, P. L.; Antonucci, V. Appl. Surf. Sci. 1999, 137, 20
[39]. Trasatti, S. J. Electroanal. Chem. 1971, 33, 351.
[40]. M. G. Ramsey, F. P. Leisenberger, F. P. Netzer, Surf. Sci. 385, (1997) 207-215
[41]. F. Tao et al, Science 322 (2008) 932.
[42]. M. F. Luo, C. C. Wang, G. R. Hu, W. R. Lin, C. Y. Ho, Y. C. Lin, Y. J. Hsu, J. Phys. Chem. C 113 (2009) 21054.
[43]. Santra, A. K.; Goodman, D. W. J. Phys.: Condens. Matter 2002,14, R31.
[44]. Dicenzo, S. B.; Berry, S. D.; Hartford, E. H. Phys. ReV. B 1988, 38, 8465
Chapter 3
[1]. 真空技術與應用(Vacuum technology & Application), 國家科學委員會精密儀器發展中心出版.
[2]. H. Luth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993
[3]. J. C. Vickerman, Surface Analysis – The Principal Techniques, Jon Wiley & Sons,1997
[4]. A.K. Stantra and D.W. Goodman, J. Phys: Condens. Matter 14(2002) R31-R62
[5]. D.j. O’Connor, B.A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992
[6]. John F. Watts, John Wolstenholme , An introduction of surface analysis by XPS
[7]. Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164(2002)
[8]. Maurice, V.; Fre`my, N.; Marcus, P. Surf. Sci. 2005, 581, 88.
[9]. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics, Inc.: Eden Prarie, MN, 1995.
[10]. Sartale, S. D.; Shiu, H. W.; Tien, M. H.; Chiang, C. I.; Luo, M. F.; Lin, Y. C.; Hsu, Y. J. J. Phys. Chem. C 2008, 112, 2066.
[11]. Jaeger, R. M.; Kuhlenbeck, K.; Freund, H.-J.; Wuttig, M.; Hoffmann, W.; Franchy, R.; Ibach, H. Surf. Sci. 1991, 259, 235
[12]. Andersson, S.; Bru˝hwiler, P. A.; Sandell, A.; Frank, M.; Libuda, J.; Giertz, A.; Brena, B.; Maxwell, A. J.; Ba¨umer, M.; Freund, H.-J.; Mårtensson, N. Surf. Sci. 1999, 442, L964.
[13]. H. Luth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993.
[14]. P. Gassmann, R. Franchy, H. Ibach, Surf. Sci.319,95 1994
Chapter 4
[1]. Andersson, S.; Bru¨hwiler, P. A.; Sandell, A.; Frank, M.; Libuda,J.; Giertz, A.; Brena, B.; Maxwell, A. J.; Ba¨umer, M.; Freund, H.-J.;Mårtensson, N. Surf. Sci. 1999, 442, L964.
[2]. Felicissimo, M. P.; Martyanov, O. N.; Risse, T.; Freund, H.-J. Surf.Sci. 2007, 601, 2105.
[3]. A. Bzowski, T.K. Sham, Phys. Rev. B 48(1993) 7836.
[4]. Chen, M.; Cai, Y.; Yan, Z.; Goodman, D. W. J. Am. Chem. Soc. 2006, 128, 6341
[5]. M. Kuhn, J.A. Rodriguez, J. Hrbek, A. Bzowski, T.K. Sham, Surf. Sci. 341
(1995) L1011
[6]. A. Bzowski, T.K. Sham, R.E.Watson, M.Weinert, Phys. Rev. B 51 (1995)
9979.
[7]. P.M.Th.M. van Attekum, G.K. Wertheim, G. Crecelius, J.H. Wernick,
Phys. Rev. B 22 (1980) 3998.
[8]. Gland, J. L.; Sexton, B. A.; Fisher, G. B. Surf. Sci. 1980, 95, 587.
[9]. Sheu, B.-R.; Strongin, D. R. J. Catal. 1995, 154,379
[10]. Schauermann, S.; Hoffmann, J.; Johanek, V.; Hartmann, J.; Libuda, J. Phys. Chem. Chem. Phys. 2002, 4, 3909
[11]. A.F. Lee et al. / Surface Science 548 (2004) 200–208
[12]. Shrikrishina D. Sartale Catal Lett (2007) 119:95–100
[13]. M.F.Luo J. Phys. Chem. C, Vol. 113, No. 28, 2009 12420
[14]. M.S. Chen, D.W. Goodman, Science 306 (2004) 252.
[15]. Rhee, C. K.; Wakisaka, M.; Tolmachev, Y. V.; Jhonston, C. M.; Haasch, R.; Attenkofer, K.; Lu, G. Q.; You, H.; Wieckowski, A. J. Electroanal. Chem. 2003, 367, 554–555.
[16]. Devarajan, S.; Bera, P.; Sampath, S. J. Colloid Interface Sci. 2005,290, 117
[17]. M. P. Casaletto et al. Surf. Interface Anal. 2006; 38: 215–218
[18]. M. Carbone et al. Surface Science 352-354 ,1996, 391-395
[19]. Yuhai Hu, Keith Griffiths Surface Science 601 (2007) 5002–5009
[20]. N. Kizhakevariam, E. M. Stuve Surface Science 286 (1993) 246-260
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2010-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明