以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:24 、訪客IP:3.147.53.90
姓名 黃彰智(Chang-Chih Huang) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 非同調非災難的籬柵編碼調變
(Noncoherently Non-Catastrophic Trellis-CodedModulation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 籬柵編碼調變是一個結合編碼與調變的技術,他可以在不增加頻寬的情況下,提供有效率的數位傳輸。在1987年Ungerboeck提出設計籬柵編碼調變的準則,根據此準則得到的籬柵碼,都有相當好的錯誤效能,但是此架構只適用於同調的環境,若為非同調環境,由Ungerboeck所提出的碼將會變成非同調的災難碼。
過去非同調的籬柵碼都需要特別設計,才可以避免災難碼的產生,在本篇論文中,我們提出一個一般化的架構,將一個特別設計過的差分編碼器置於Ungerboeck提出的籬柵編碼調變的編碼器之前,如此一來,不管籬柵編碼調變的編碼器產生的是何種碼,此架構都是一個非同調的非災難碼架構。本篇論文中,我們設計各種星座圖的非同調非災難碼架構,包括MPSK、QAM、TAPSK及APSK。模擬結果顯示,使用一樣的碼,我們所設計的架構,其錯誤效能都優於傳統的籬柵編碼架構。隨著星座圖中點數的上升,我們設計的架構所獲得的優勢也越來越少,因此,在接收端,我們也利用演算法設計新的差分編碼器,根據電腦模擬顯示,錯誤效能可以進一步提升,最後,一個結合差分編碼與籬柵編碼調變的超級籬柵解碼也被提出,此為一最大可能性的解碼器,雖然複雜度上升,其錯誤效能也因此在進一步提升。
在第一章中,我們回顧由Ungerboeck所提出的籬柵編碼調變,在同調的加成性的白高斯雜訊通道,這是一個最佳的編碼調變架構,我們在這章中,會敘述甚麼是非同調的災難碼,同時也回顧非同調籬柵編碼調變的技術。
在第二章中,我們提出針對MPSK星座圖的非同調非災難碼架構,此架構可以使用Ungerboeck所提出的碼,且在非同調環境下具有更好的錯誤效能,我們也根據非同調距離去做碼搜尋,得到更好的碼,模擬結果可以證實我們的架構確實有較好的錯誤效能。
在第三章中,我們將第二章的非同調非災難碼架構做一個一般化的呈現,只要滿足四個假設,則不管星座圖為MPSK或是QAM,設計出來的碼都是非同調非災難碼,在這一章中,我們也敘述此架構也適用於多維度的籬柵編碼調變。
在第四章中,我們利用一個演算法去改善我們的非同調非災難碼架構中的差分編碼器,並在接收端提出結合差分編碼器與籬柵編碼調變的解碼器的超級籬柵解碼器,錯誤效能可以大幅下降。
在最後一章中,我們對本篇論文的研究結果做一個總結,討論此篇論文研究的未來發展。
摘要(英) In this dissertation, firstly, we propose a novel bandwidth-efficient noncoherent trelliscoded
MPSK scheme, in which a particularly-designed differential encoder is added in
front of the trellis encoder. With this differential encoder, trellis-coded MPSK proposed
by Ungerboeck is no longer noncoherently catastrophic and thus achieves better error
performance. Moreover, new trellis codes which, for the proposed scheme, have better bit
error rates than Ungerboeck’s codes are found by computer searches.
Secondly, we propose a general noncoherently non-catastrophic trellis-coded modulation
scheme, in which the transmitter includes a differential encoder, a rotator, an inverse
signal mapper, a convolutional encoder and a signal mapper. We present examples of
the proposed scheme including MPSK (M-ary phase shift keying), QAM (quadratureamplitude
modulation), and TAPSK (twisted amplitude and phase shift keying). For
trellis-coded QAM, a differential encoder with which the complexity of the proposed
scheme can be reduced is proposed. We also modify the proposed two-dimensional trelliscoded
modulation to be multi-dimensional noncoherently non-catastrophic trellis-coded
modulation. Simulation results demonstrate that for noncoherent decoding, the proposed
trellis-coded QAM has much better error performance than conventional trellis-coded
QAM, and the proposed trellis-coded 16APSK outperforms trellis-coded 16QAM for short
observation length.
We use the simplest algorithm, called BDFA, in the receiver side. In 8PSK constellation,
the simulation results are better than Ungerboeck’s scheme. The advantage of
our scheme decreases when the size of constellation increases. Therefore, we use algoi
rithm to modify the specific differential decoder to improve the BER of our proposed
scheme. Finally, a combined trellis decoder is proposed. This decoder improves the BER
performance, further.
關鍵字(中) ★ 相差編碼
★ 籬柵編碼調變
★ 災難碼
★ 非同調關鍵字(英) ★ noncoherent
★ catastrophic code
★ trellis-coded modulation
★ differential encoding論文目次 1 Introduction 1
1.1 Coherent Trellis-Coded Modulation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Noncoherent Trellis-Coded Modulation . . . . . . . . . . . . . . . . . . . . 3
1.3 Chapter Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Noncoherently Non-Catastrophic Trellis-Coded MPSK 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Noncoherent Decoding and Distance . . . . . . . . . . . . . . . . . . . . . 11
2.4 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Noncoherently Non-Catastrophic Trellis-Coded Modulation 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Specific Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 MPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 QAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 TAPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Multi-Dimensional Trellis Codes . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
iii
4 Differential Encoder by a Look-Up Table for Noncoherently Non-Catastrophic
Trellis-Coded 32QAM 44
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Review of Differential Encoding by a Look-Up Table . . . . . . . . . . . . 46
4.2.1 The First Algorithmto Arrange Groups . . . . . . . . . . . . . . . 49
4.2.2 The Second Algorithmto Arrange Groups . . . . . . . . . . . . . . 50
4.3 32-QAMUsingModified Differential Encoder . . . . . . . . . . . . . . . . 53
4.4 Combined Decoder in Receiver Side . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Conclusions and Future Works
參考文獻 [1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform.
Theory, vol. 28, pp. 55-67, Jan. 1982.
[2] —, “Trellis-coded modulation with redundant signal sets-Part I: Introduction,” IEEE
Communications Magazine, vo1. 25, no. 2, pp. 5-11, Feb. 1987.
[3] —, “Trellis-coded modulation with redundant signal sets-Part II: State of the art,”
IEEE Communications Magazine, vo1. 25, no. 2, pp. 12-21, Feb. 1987.
[4] D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun., vol. 44,
pp. 172-183, Feb. 1996.
[5] —, “Decoding algorithms for noncoherent trellis coded modulation,” IEEE Trans.
Commun., vol. 44, pp. 312-323, Mar. 1996.
[6] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun.,
vol. 47, pp. 1376-1385, Sep. 1999.
[7] R. Y. Wei and M. C. Lin, “Noncoherent detection for trellis coded MPSK,” IEEE
Trans. Commun., vol. 49, pp. 765-768, May 2001.
[8] —, “Noncoherent-coded modulation constructed from conventional trellis-coded
modulation,” IEEE Communications Letters, pp. 260-262, Sept. 1998.
[9] P. Fan and X. G. Xia, “A noncoherent coded modulation for 16QAM,” IEEE Trans.
Commun., vol. 49, pp. 585-588, Apr. 2001.
69
[10] R. Y. Wei and L. T. Chen, “Comments on “A noncoherent coded modulation for
16QAM”,” IEEE Trans. Commun., vol. 54, pp. 1347-1348, July 2006.
[11] R. Nuriyev and A. Anastasopoulos, “Rotationally invariant and rotationally robust
codes for the AWGN and the noncoherent channel,” IEEE Trans. Commun., vol. 51,
pp. 2001-2010, Dec. 2003.
[12] G. Colavolpe and R. Raheli, “Theoretical analysis and performance limits of noncoherent
sequence detection of coded PSK,” IEEE Trans. Inform. Theory, vol. 46,
pp. 1483-1494, Jul. 2000.
[13] L. F.Wei, “Rotationally invariant convolutional channel coding with expanded signal
set-Part I: 180,” IEEE J. Select. Areas Commun., vol. SAC-2, pp. 659-671, Sep. 1984.
[14] —, “Rotationally invariant convolutional channel coding with expanded signal set-
Part II: Nonlinear codes,” IEEE J. Select. Areas Commun., vol. SAC-2, pp. 672-686,
Sep. 1984.
[15] —, “Rotationally invariant trellis-coded modulations with multidimensional MPSK,”
IEEE J. Select. Areas Commun., vol. 7, pp. 1281-1295, Dec. 1989.
[16] M. D. Trott, S. Benedetto, R. Garello and M. Mondin, “Rotational invariance of
trellis codes-Part I: Encoders and precoders,” IEEE Trans. Inform. Theory, vol. 42,
pp. 751-765, May 1996.
[17] S. Benedetto, R. Garello, M. Mondin and M. D. Trott, “Rotational invariance of
trellis codes-Part II: Group codes and decoders,” IEEE Trans. Inform. Theory, vol.
42, pp. 766-778, May 1996.
[18] S. S. Pietrobon, R. H. Deng, A. Lafanechere, G. Ungerboeck and D.J. Costello, Jr.,
“Trellis-Coded Multidimentional Phase Modulation,” IEEE Trans. Inform Theory,
pp. 63-89, Jan. 1990.
70
[19] S. S. Pietrobon and D.J. Costello, Jr., “Trellis coding with multidimentional QAM
signal sets,” IEEE Tran. Inform. Theory, pp. 325-336, Mar. 1993.
[20] E. Biglieri, D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications. New York: Macmillan, 1991.
[21] A. Anastasopoulos and K. M. Chugg, “Adaptive iterative detection for phase tracking
in turbo-coded systems,” IEEE Trans. Commun., vol. 49, pp. 2135-2144, Dec. 2001.
[22] G. Ferrari, A. Anastasopoulos, G. Colavolpe and E. Eaheli, “Adaptive iterative detection
for the phase-uncertain channel: Limited-tree-search versus truncated-memory
detection,” IEEE Trans. Veh. Tech., vol. 53, pp. 433-442, Mar. 2004.
[23] M. Nissila and S. Pasupathy, “Adaptive iterative detectors for phase-uncertain channels
via variational bounding,” IEEE Trans. Commun., vol. 57, pp. 716-725, Mar.
2009.
[24] R. Y. Wei, “Differential encoding by a look-up table for quadrature-amplitude modulation,”
IEEE Trans. Commun.,, vol. 59, no. 1, pp. 84-94, Jan. 2011.
[25] W. Weber, III, “Differential encoding for multiple amplitude and phase shift keying
systems,” IEEE Trans. Commun., vol. 26, pp. 385-391, Mar. 1978.
[26] D.Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE
Trans. Inform. Theory, vol. 48, pp. 651-668, Mar. 2002.
[27] R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans.
Commun., vol. 57, pp. 3195-3198, Nov. 2009.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2011-1-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare