博碩士論文 975201125 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.145.2.95
姓名 郭峰銘(Feng-Ming Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
(Remotely Distributed and Up-converted 20Gbit/s Error-Free Wireless On-off-keying Data Transmission at W-band Using Ultra-Wideband Photonic Transmitter-Mixer)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本篇論文中,我們使用近彈道單載子傳輸光二極體(Near Ballistic Uni-traveling-carrier Photodiode, NBUTC-PD)基底的光子傳送混波器(Photonic Transmitter-Mixer, PTM)展示了一個遠端分發及升頻的20Gbps無線振幅調變資料傳輸於W-頻段(75-110GHz)。這種新元件由一個主動的近彈道單載子傳輸光二極體與平面、積體化的被動電路組成。這些被動電路被設計來饋入中頻(intermediate-frequency,IF)調變輸入信號及萃取出寬頻的光電輸出信號。藉由發展出精確的疊加式分析模型,以及將頻帶相異的信號分離到不同的路徑,中頻調變輸入信號及光電輸出信號可被精準的設計以及分別地進行最佳化。於是我們可以同時達成超寬的光電轉換頻寬(67-118GHz)以及中頻調變頻寬(>15GHz),並在近彈道單載子傳輸光二極體與WR-10波導管輸出端之間擁有低入射損耗(<2dB),同時在中頻調變時擁有高明滅比(33dB)。藉由使用這種高品質元件,無誤碼(error-free)的遠端升頻20Gbs無線振幅調變資料傳輸獲得了成功。在另一方面,我們也發展了一個遠端分發的1皮秒(pico second, ps)光脈衝列做為無線資料傳輸所需的同步高品質光子載波,其重複率為93GHz。這種信號由光譜逐線塑形器透過重複率倍增(repetition rate multiplication, RRM)產生。相較於傳統的93GHz正弦載波,同電流下其相應的毫米波功率要高上4dB。不同於高損耗的頻域振幅濾波,我們用來產生93GHz脈衝列的的重複性倍增技術是基於在31-GHz光頻梳上應用週期性無耗損頻域相位濾波。不同於傳統的鎖模雷射,在長途傳輸中所造成的光纖色散可以被完全地預先補償而不需要額外的色散補償組件。在我們的實驗中,整個無線傳輸連結提供超過15GHz的基頻頻寬用以傳輸超寬頻資料。由於近彈道單載子傳輸光二極體的高功率表現以及所使用的高速毫米波偵測器所具有的高感測度,在展示的無線連結中無論發送端或接收端都沒有使用毫米波放大器。因此,我們展示了遠端分發及升頻的20Gbps無線振幅調變資料傳輸,並在通過25公里長標準單模光纖(standard-single-mode-fiber,SSMF)後依然能成功地維持無誤碼。
摘要(英) In this thesis, we demonstrated a remotely up-converted and distributed 20Gbit/s wireless on-off-keying (OOK) data transmission link at W-band by using near-ballistic uni-traveling-carrier photodiode based photonic transmitter-mixer (NBUTC-PD PTM). Such novel device is consisted of an active NBUTC-PD and integrated planar passive circuit for both feeding intermediate-frequency (IF) modulation input and extracting wide-band optical-to-electrical (OE) output signals. By developing an accurate analytical model in a cascade topology and separating signals in different operating bands into different flow paths, the OE output and IF modulation input responses can be designed precisely and optimized respectively. Accordingly, we can achieve both ultra-wide OE bandwidth (67-118 GHz) and IF modulation bandwidth (>15GHz). Moreover, a low coupling loss (<2dB) at W-band from NBUTC-PD to WR-10 waveguide output port and a high extinction ratio (>33dB) during IF modulation can be also achieved simultaneously. By use of such high-performance device, 20Gbit/s on-off keying (OOK) error-free wireless data transmission can be achieved successfully under remotely up-converted scheme. On the other side, we also developed a remotely distributed 1ps optical pulse train source with a repetition rate at 93GHz as high performance synchronized photonic carrier for wireless data transmission. It is generated by a spectral line-by-line shaper with the repetition rate multiplication (RRM) technique. As compared to conventional 93GHz sinusoidal carrier, the corresponded millimeter wave (MMW) power of this carrier is 4dB higher under the same output photocurrent from PD. In contrast to the lossy amplitude filtering, our RRM technique for the 93 GHz pulse train is based on applying periodic loss-less spectral phase filtering onto the 31 GHz comb lines. In contrast to the traditional mode-locked laser, the fiber dispersion for a long-reach transmission distance can be totally pre-compensated without additional dispersion compensation components. In our experiment, the entire wireless link (after up/down-conversion process and a pair of horn antenna) provides a >15GHz baseband bandwidth for transmitting ultra-broadband data signal. Thanks to the high power performance of NBUTC-PD and high sensitivity of adopted high speed MMW detector, the W-band MMW amplifiers are eliminated in both transmitting and receiving ends of our demonstrated link. Consequently, a remotely distributed and up-converted 20Gbit/s error-free OOK wireless data transmission link over 25km standard-single-mode-fiber (SSMF) has been demonstrated successfully.
關鍵字(中) ★ 光子傳送混波器
★ 遠距分佈及調變
★ 20Gbit/s無線資料傳輸於W-頻帶
關鍵字(英) ★ 20Gbit/s wireless transmission
★ Remotely Distributed and Up-converted
★ Photonic Transmitter-Mixer
論文目次 摘 要 i
Abstract iiii
Acknowkledgement v
Table of contents vi
List of figures vii
I. Introduction 1
II. Optical MMW source 7
III. MMW photonic transmitters 15
IV. Photonic MMW wireless links 28
V. Summary 34
Reference 35
參考文獻 [1] Lazarus M., “The Great Spectrum Famine,” IEEE Spectrum. Vol. 47, Issue. 10, pp.26-31, 2010
[2] Y. Kado, M. Shinagawa, H.-J. Song., & T. Nagatsuma, “Close Proximity Wireless Communication Technologies Using Shortwaves, Microwaves, and Sub-terahertz Waves.,” Progress In Electromagnetics Research Symposium Proceedings. Xi'an, China, March 22–26, 2010, pp.777.
[3] A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies,” J. Lightwave Technol.,vol. 26, issue 15, pp.2338, 2008.
[4] M. Weis, M. Huchard, A. Stohr, B. Charbonnier, S. Fedderwitz, and D. S. Jager, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5Gb/s,” J. Lightwwave Technol. ,vol. 26, issue 15, pp.2424, 2008
[5] J. Wells,“Faster Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine., vol. 10, issue 3, pp.104-112, 2009
[6] H.-J. Song, K.Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado,and T. Nagatsuma, “Terahertz Wirekess Communications Link at 300 GHz,” IEEE Int. Topical Meeting Microwave Photon. 2010, Montreal, Quebec, Canada, Oct 5-8, 2010, pp.42.
[7] G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune and J.F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 μm THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett., vol. 46, issue 19, pp. 1349, 2010.
[8] J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys., vol.17, issue 11, pp.111101, 2010
[9] A. M. Niknejad, and H. Hashemi, “mm-Wave Silicon Technology: 60 GHz and Beyond” Springer-Verlag, New York, LLC, 2008.
[10] J. Lee, Y. Huang, Y. Chen, H. Lu, C. Chang, “A Low-Power Fully Integrated 60GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,” ISSCC Dig. Tech. Papers 2009. San Francisco, CA, USA. Feb. 8-12, 2009, pp.316
[11] H. Takahashi, T. Kosugi, A. Hirata, K. Murata, and N. Kukutsu, “10-Gbit/s QPSK Modulator and Demodulator for a 120-GHz-band Wireless Link,” 2010 IEEE Microwave Theory Tech. Int. Microwave Symp., Anaheim, CA, USA, May 23-28, 2010, pp.1.
[12] R. Yamaguchi, A. Hirata, T. Kosugi, H. Takahashi, N. Kukutsu, T. Nagatsuma, Y. Kado, H. Ikegawa, H. Nishikawa, and T. Nakayama, “10-Gbit/sec MMIC Wireless Link Exceeding 800 Meters,” IEEE Radio and Wireless Symposium 2008 Orlando, FL, USA, Jan. 22-24, 2008, pp. 695
[13] J. Hacker, M. Seo, A. C. Young, Z. Griffith, M. Urteaga, T. Reed, and M. Rodwell, “THz MMICs based on InP HBT Technology,” 2010 IEEE Microwave Theory Tech. Int. Microwave Symp., Anaheim, CA, USA, May 23-28, 2010, pp.1.
[14] John D. Albrecht, Mark J. Rosker, H. Bruce Wallace, and Tsu-Hsi Chang, “THz Electronics Projects at DARPA: Transistors, TMICs, and Amplifiers,” 2010 IEEE Microwave Theory Tech. Int. Microwave Symp., Anaheim, CA, USA, May 23-28, 2010, pp.1118.
[15] K. Fang, M. J. Crisp, F. Yang, R. V. Penty and I. H. White,” Demonstration of Distributed Antenna System Using Optical Multicast Radio-over-Fibre Links,” IEEE Int. Topical Meeting Microwave Photon. 2009, Universidad Politecnica de Valencia, Valencia, Spain, Oct 14-16, 2009, pp.1
[16] Alwyn J. Seeds, and Keith J. Williams,“Microwave Photonics,” J. Lightwave Technol. , vol.24, issue 12, pp.4628, 2006
[17] J. Capmany, & D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, vol. 1 pp. 319, 2007
[18] M. Weiss, A. Stohr, F. Lecoche, and B. Charbonnier,“27 Gbit/sec Photonic Wireless 60 GHz Transmission System using 16-QAM OFDM,” IEEE Int. Topical Meeting Microwave Photon. 2009, Universidad Politecnica de Valencia, Valencia, Spain, Oct 14-16, 2009, pp.1
[19] W.-J. Jiang, C.-T. Lin, L.-Y. Wang He, C.-C. Wei, C.-H. Ho, Y.-M. Yang, P.-T. Shih, J. Chen, and S. Chi,”32.65-Gbps OFDM RoF Signal Generation at 60GHz Employing an Adaptive I/Q Imbalance Correction,” 36nd European Conference on Optical Communication, Torino, Italy, Sep. 19-23, 2010, Paper Th.9.B.5.
[20] H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma ,”Broadband-Frequency-Tunable Sub-Terahertz Wave Generation Using an Optical Comb, AWGs, Optical Switches, and a Uni-Traveling Carrier Photodiode for Spectroscopic Applications,” J. Lightwwave Technol., vol.26, issue 15, pp.2521, 2008
[21] C.-T. Lin, P.-T. Shih, J. Chen, W.-J. Jiang, S.-P. Dai, P.-C. Peng, Y.-L. Ho, and S. Chi,”Optical Millimeter-wave Up-Conversion Employing Frequency Quadrupling without Optical Filtering,” IEEE Trans. on Microwave Theory and Tech., vol57, issue 8, pp.2084, 2009
[22] F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang,“Spectral Power Enhancement in a 100-GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping,” IEEE Photonics Journal., vol. 2, issue 5, pp.719, 2010
[23] T. Kawanishi, S. Oikawa, K. Yoshiara, T. Sakamoto, S. Shinada, and M. Izutsu,”Low Noise Photonic Millimeter-Wave Generation Using an Integrated Reciprocating Optical Modulator,” IEEE Photon. Technol. Lett., vol. 17, issue 3, pp.669, 2005
[24] A. Hirata, H. Ishii, and T. Nagatsuma,”Design and Characterization of a 120-GHz Millimeter-Wave Antenna for Integrated Photonic Transmitters,” IEEE Trans. Microwave Theory Tech., vol. 49, issue 11, pp.2157, 2001
[25] Y.-S. Wu, Nan-Wei Chen, and J.-W. Shi,“A W-Band Photonic Transmitter/Mixer Based on High-Power Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD),” IEEE Photon. Technol. Lett., vol. 20, issue 11, pp.1799, 2008
[26] H.-G. Bach, R. Kunkel, G.G. Mekonnen, D. Pech, T. Rosin, D. Schmidt, T. Gaertner, and R. Zhang,”Integration Potential of Waveguide-integrated Photodiodes: Self-powered Photodetectors and sub-THz pin-Antennas,” Proc. OFC 2008, San Diego. CA, USA, Feb. 24-28, 2008, Paper OMK1
[27] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura,”Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech, vol. 49, issue 6, pp.1032, 2001
[28] K. Kato,”Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech, vol. 47, issue 7, pp.1265, 1999
[29] D. A. Tulchinsky, J. B. Boos, D. Park, P. G. Goetz, W. S. Rabinovich, and K. J. William,”High-Current Photodetectors as Efficient, Linear, and High-Power RF Output Stages,” J. of Lightwave Technol., vol.26, issue 4, pp.408, 2008
[30] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, and T. Nagatsuma,”High-Directivity Photonic Emitter Using Photodiode Module Integrated With HEMT Amplifier for 10-Gbit/s Wireless Link,” IEEE Trans. Microwave Theory Tech., vol. 52, issue 8, pp.1843, 2004
[31] H.-J. Tsai, N.-W. Chen, F.-M. Kuo, and J.-W. Shi,”Front-End Design of W-band Integrated Photonic Transmitter with Wide Optical-to-Electrical Bandwidth for Wireless-Over-Fiber Applications,” 2010 IEEE Microwave Theory Tech. Int. Microwave Symp., Anaheim, CA, USA, May 23-28, 2010, pp. 740-743.
[32] N.-W. Chen, H.-J.Tsai, F.-M. Kuo, and J.-W. Shi,”High-Speed W-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications,” To be published in IEEE Trans. Microwave Theory Tech., vol.59, 2011
[33] H.-C. Chien, A. Chowdhury, Z. Jai, Y.-T. Hsueh, and G.-K. Chang, “Long-Reach 60-GHz Mm-Wave Optical-Wireless Access Network Using Remote Signal Regeneration and Upconversion,” 34nd European Conference on Optical Communication, Brussels Expo, Belgium, Sep. 21-25, 2008, pp. 137-138
[34] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., vol. 24, issue 4, pp. 1725-1731, 2006.
[35] A. Hirata, T. Minotani, and T. Nagatsuma, “Millimeter-Wave Photonics for 10-Gbit/s Wireless Links,” IEEE Lasers and Electro-Optics Society 2002 Annual Meeting, SECC, Glasgow, Scotland, Nov. 13-14, 2002, vol. 2, pp. 477-478
[36] Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett., vol. 20, issue. 13, pp.1160–1162, 2008.
[37] J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, issue 1, pp. 80-86, 2010.
[38] J.-W. Shi, Y.-S.Wu, and Y.-S. Lin, “Near-ballistic uni-traveling-carrier photodiode based V-band optoelectronic mixers with internal up-conversion-gain, wide modulation bandwidth, and very high operation current performance,” IEEE Photon. Technol. Lett., vol. 20, issue 11, pp. 939–941, 2008.
[39] F.- M. Kuo, Ho Yen-Lin, Jin-Wei Shi, Nan-Wei Chen, Wen-Jr Jiang, Chun-Ting Lin, Jason (Jyehong) Chen, Ci-Ling Pan, and Sien Chi, “12.5-Gb/s Wireless Data Transmission by Using Bias Modulation of NBUTC-PD Based W-Band Photonic Transmitter-Mixer,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OThF7.
[40] H.-P. Chuang and C.-B. Huang, “Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper, ” 2010 IEEE Photinic Society's 23rd Annual Meeting, Denver, Colorado, USA Nov. 7-11, 2010, PaPer.ThO3,
[41] A. Hirata, M. Harada, and T. Nagatsuma,"120-GHz Wireless Link Using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-Wave Signals,"J. of Lightwave Technol., vol. 21, issue 10, pp. 2145–2153 ,2003
[42] T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Furuta, K. Yoshino and H. Ito,”160 GHz actively modelocked semiconductor laser,” Electron. Lett., vol.39, issue 6, pp.520, 2003
[43] T. Ohno, F. Nakajima, T. Furuta and H. Ito,”240 GHz active modelocked laser diode,” Electron. Lett., vol.41, issue 19, pp.1057, 2005
[44] S. Kawanishi, and M. Saruwatari,”A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection,” IEEE Trans. Instrumentation and Measurement., vol.38, issue 2, pp.569, 1989
[45] Z. F. Fan and M. Dagenais,”Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans. Microwave Theory Tech., vol.45, issue 8, pp.1296, 1997
[46] Pearson, J. C., Chen, P., & Pickett, H. M. Photomixer Systems as Submillimeter Oscillators and Coherent Test Sources. Proc. of SPIE 2003, San Diego, CA, USA, Aug. 25, 2002, vol 4855, pp.459
[47] R. Hofstetter, H. Schmuck, and R. Heidemann,”Dispersion Effects in Optical Millimeter-Wave Systems Using Self-Heterodyne Method for Transport and Generation,” IEEE Trans. Microwave Theory and Tech., vol.43, issue 9, pp.2263, 1995
[48] C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner,”Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express, vol. 16, issue 4, pp.2520, 2008
[49] T. Sakamoto, T. Kawanishi, and M. Izutsu,”Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett., vol.32, issue 11, pp.1515, 2007
[50] K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Academic Press, 2005)
[51] P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi,”Optical Millimeter‐Wave Signal Generation via Frequency 12‐tupling,” J. Lightwave Technol., vol. 28, issue 1, pp.71, 2010
[52] C.-T. Lin, P.-T. Shih, J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi,”Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering,” IEEE Photon. Technol. Lett., vol. 20, issue 12, pp.1027, 2008
[53] Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner,“Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nature Photon., vol. 1, pp.463, 2007
[54] C.-B. Huang, D. E. Leaird, and A. M. Weiner,”Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett., vol. 32, issue 22, pp.3242, 2007
[55] C.-B. Huang, D. E. Leaird, and A. M. Weiner,”Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett., vol.21, issue 18, pp.1287, 2009
[56] H.-P. Chuang and C.-B. Huang,”Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper. Opt. Express, vol.18, issue 23, pp.24003, 2010
[57] H. Maestre, A. J. Torregrosa, J. A. Pereda, C. R. Fernandez-Pousa, and J. Capmany,”Dual-wavelength Cr3+:LiCaAlF6 solid-state laser with tunable THz frequency difference,” IEEE J. Quantum. Electron., vol.16, issue 11, pp.1681, 2010
[58] C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C’. Mayorga, A. K.lehr, G‥. Erbert, and M. R. Hofman,”New two-color laser concepts for THz generation,” IEEE J. Sel. Topics Quantum Electron., vol.14, issue 2, pp.270, 2008
[59] M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park,”Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express, vol 8, issue 12, pp.12291, 2010
[60] C.-H. Yeh, C.-W. Chow, F.-Y. Shih, C.-H. Wang, Y.-F. Wu, and S. Chi,”Tunable dual-wavelength fiber laser using optical injection Fabry-Perot laser,” IEEE Photon. Technol. Lett., vol.20 issue 24, pp.2093, 2009
[61] S.-C. Chan, R. Diaz, and J.-M. Liu,”Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron., vol. 40, pp.83, 2008
[62] L.A. Johansson and A.J. Seeds,”Fiber-integrated heterodyne optical injection phase-lock loop for optical generation of millimeter-wave carriers,” 2000 IEEE Microwave Theory Tech. Int. Microwave Symp., Boston, MA, USA, Jun. 11-16, pp.1737, 2000
[63] Y.-S. Juan, and F.-Y. Lin,”Ultra-High Frequency Microwave Signal Generation Utilizing a Double Injection-Locked Semiconductor Laser,” submitted to Opt. Lett.
[64] J.-W. Shi, F.-M. Kuo, and M.-Z. Chou,”A Linear Cascade Near-Ballistic Uni-Traveling-Carrier Photodiodes with Extremely High Saturation-Current Bandwidth Product (6825mA-GHz, 75mA/91GHz) under a 50? Load,” Postdeadline Papers OFC 2010, San Diego. CA, USA, March 21-26, 2010, pp.PDP 6
[65] F.-M. Kuo, M.-Z. Chou, and J.-W.Shi,“Linear-Cascade Near-Ballistic Uni-Traveling-Carrier Photodiodes with an Extremely High Saturation-Current-Bandwidth Product,” to be published in J. Lightwave Technol., vol.29, issue 3, 2011
[66] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, J.-Y. Lu, C.-K. Sun, and C.-L. Pan,”Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance,” IEEE Photon. Technol. Lett., vol. 17, issue 8, pp.1722, 2005
[67] M. R. Melloch, N. Otsuka, J. M. Woodall, A. C. Warren, J. L. Freeouf,”Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperature,” Appl. Phys. Lett., vol.57, issue 15, pp.1531, 1990
[68] S. Gupta, J. F. Whitaker, and G. A. Mourou,”Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics., vol.28, issue 10, pp.2464, 1992
[69] J.-W. Shi, K.-G. Gan, Y.-J. Chiu, Y.-H. Chen, C.-K. Sun, Y.-J. Yang, and J. E. Bowers,”Metal-Semiconductor-Metal Traveling-Wave-Photodetectors,” IEEE Photon. Techno. Lett., vol. 13 issue 6, pp.623, 2001
[70] J.-W. Shi, K.-G. G., Y.-H. C., C.-K. Sun, Y.-J. Chiu, and J. E. Bowers,”Ultra-High Power-Bandwidth Product and Nonlinear Photo-Conductance Performances of Low-Temperature-Grown GaAs Based Metal-Semiconductor-Metal Traveling-Wave Photodetectors,” IEEE Photon. Tech. Lett., vol. 14, issue 11, pp.1587, 2002
[71] S. Y. Chou, and M. Y. Liu,”Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors,” IEEE J. of Quantum Electronics., vol. 28, issue 10, pp.2358, 1992
[72] L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles,”Data encoding on terahertz signals for communication and sensing,” Opt. Lett., vol.33, issue 4, pp.393, 2008
[73] T.-A. Liu, G.-R. Lin, Y.-C. Chang, and C.-L. Pan,”Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Opt. Express., vol. 13, issue 25, pp.10416, 2005
[74] Y.-T. Li, J.-W. Shi, C.-Y. Huang, N.-W. Chen, S.-H. Chen, J.-I. Chyi, Y.-C. Wang, C.-S. Yang, and C.-L. Pan,”Characterization and Comparison of GaAs/AlGaAs Uni-Traveling Carrier and Separated-Transport-Recombination Photodiode Based High-Power Sub-THz Photonic-Transmitters,” IEEE J. of Quantum Electronics., vol.46, issue 1, pp.19, 2010
[75] S. Verghese, K. A. McIntosh, and E. R. Brown,”Highly Tunable Fiber-Coupled Photomixers with Coherent Terahertz Output power,” IEEE Trans. Microwave Theory Tech., vol.45, issue 8, pp.1301, 1997
[76] A. J. Lochtefeld, M. R. Melloch, J. C. P. Chang, and E. S. Harmon,”The Role of Point Defects and Arsenic Precipitates in Carrier Trapping and Recombination in Low-Temperature Grown GaAs,” Appl. Phys. Lett., vol. 69, issue 10, pp.1465, 1996
[77] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi,”High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics., vol. 10, issue 4, pp.709, 2004
[78] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan,”High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,”. IEEE Photon. Technol. Lett., vol. 16, issue 3, pp.864, 2004
[79] J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong,”High-Speed, High-Responsivity, and High-Power Performance of Near-Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, issue 19, pp.1929, 2005
[80] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55?m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, issue 8, pp.938, 2006
[81] Y.-S. Wu and J.-W. Shi,”Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band,” IEEE Photon. Technol. Lett., vol. 20, issue 13, pp.1160, 2008
[82] F.-M. Kuo, J.-W. Shi, S.-N. Wang, N.-W. Chen, P.-T. Shih, C.-T. Lin, W.-J. Jiang, E.-Z. Wong, J. Chen, and S. Chi,“W-Band Wireless Data Transmission by the Integration of a Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD) with a Horn Antenna Fed by a Quasi-Yagi Radiator,” IEEE Electron Device Lett., vol. 30, issue 11, pp.1167, 2009
[83] A. Ueda, T. Noguchi, H. Iwashita, Y. Sekimoto, M. Ishiguro, S. Takano, T. Nagatsuma, H. Ito, A. Hirata, and T. Ishibashi,”W-band Waveguide Photomixer Using a Uni-Traveling-Carrier Photodiode With 2-mW Output,” IEEE Trans. Microwave Theory Tech., vol. 51, issue 5, pp.1455, 2003
[84] A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. S. Jager,” Ultra-Wide-Band Traveling-Wave Photodetectors for Photonic Local Oscillators,” J. Lightwave Technol., vol. 21, issue 12, pp.3062, 2003
[85] Jin-Wei Shi, F.-M. Kuo, H. J. Tsai, Y.-M. Hsin, N.-W. Chen, H.-C. Chiang, H.-P. Chuang, C.-B. Huang, Ci-Ling Pan,"20-Gb/s On-off-keying Wireless Data Transmission by Using Bias Modulation of NBUTC-PD Based W-Band Photonic Transmitter-Mixer,” IEEE Int. Topical Meeting Microwave Photon. 2010, Montreal, Quebec, Canada, Oct 5-8, 2010, Paper WE3-3.
[86] F.-M. Kuo, J.-W. Shi, N.-W. Chen, C.-B. Huang, H.-P. Chuang, H.-J. Tsai, and Ci-Ling Pan,"20-Gb/s Error-Free Wireless Transmission Using Ultra-Wideband Photonic Transmitter-Mixer Excited with Remote Distributed Optical Pulse Train," Proc. OFC 2011, Los Angeles. CA, USA, March 6-10, 2011, Paper OWT5.
[87] R. W. Ridgway, D. W. Nippa, and S. Yen,”Data transmission using differential phase-shift keying on a 92 GHz carrier,” IEEE Trans. Microwave Theory Tech., vol. 58, issue 11, pp.3117, 2010
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2011-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明