博碩士論文 983202086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.118.119.135
姓名 林宜徵(Yi-jeng Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用MODIS衛星資料推估地表土壤含水量
(Surface Soil Moisture Assessment Using MODIS Data)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 土壤含水量在地表蒸發與植物蒸散的水文循環中是一個重要的參數,利用MODIS衛星影像可以推估土壤含水量狀況。本研究的主要目標是使用基於經驗參數化地表溫度(LST)與常態植生指標(NDVI)資料產生的TVDI (temperature-vegetation dryness index)指標推估台灣地區2009年與2010年的地表土壤含水量。
由初期研究顯示台灣地區不同高度造成的氣候差異會對TVDI指標影像造成影響,本研究提出依照高度分區的方式計算TVDI指標來克服此一問題,利用台灣地區地形數值模型分析後得到海拔1,000公尺做為高度分區的門檻值,將台灣分成1,000公尺以下的平地區與1,000公尺以上的山區,並各自產生TVDI指標影像。本研究使用地面測站的每日降雨量資料評估台灣地區TVDI指標與土壤含水量的關連性,比較成果顯示TVDI指標與降雨事件之間具有明顯的關連性。
由於使用MODIS衛星資料產生的TVDI指標影像不具有定量的物理單位,本研究將TVDI指標影像與AMSR-E (Advanced Microwave Scanning Radiometer for Earth observing system)的地表土壤含水量影像進行迴歸分析以找出兩種資料之間的線性轉換方程式。AMSR-E地表土壤含水量影像的數值具有定量單位但空間解析度為25公里,利用1公里空間解析度的TVDI指標與AMSR-E地表土壤含水量的轉換方程式可以把TVDI指標影像轉換成具有定量單位的1公里空間解析度土壤含水量影像,以增加資料的應用價值。迴歸分析成果顯示TVDI指標影像與AMSR-E土壤含水量影像具有一致的成果,這代表利用AMSR-E土壤含水量資料將TVDI指標影像轉換成土壤含水量影像是可行的。根據轉換後土壤含水量影像的分析成果,台灣地區TVDI指標影像的轉換後土壤含水量影像的精確度高,而且分區計算的TVDI指標影像相對於不分區計算的TVDI指標影像的轉換成果具有更高的精確度,這代表在台灣地區使用分區TVDI指標影像轉換的土壤含水量影像能更精確的反映出AMSR-E土壤含水量資料的特性。
摘要(英) Soil moisture is a key factor in controlling the exchange of water between land surface evaporation and plant transpiration. The main objective of this study is to assess soil moisture conditions in Taiwan using Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2009 and 2010. A simple surface dryness index called Temperature-Vegetation Dryness Index (TVDI) based on an empirical parameterization of the relationship between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), is used for estimating land surface soil moisture.
From the initial findings obtained from the TVDI analysis of MODIS data, we find that the TVDI was affected by climatic variations due to changes of elevation. The analysis result of digital elevation model shows that 1,000 m is a suitable threshold to separate Taiwan into two parts. Thus, the study area was divided into two regions, lower than 1,000 m and another higher than 1,000 m. The TVDI method was then applied for each region. The daily rainfall data from meteorological stations were used to check the relationship between TVDI and soil moisture, the result shows that there is significant relationship between TVDI and rainfall event.
Because TVDI is an index, regression analysis between TVDI results and soil moisture data from AMSR-E (Advanced Microwave Scanning Radiometer for Earth observing system) is performed to find the transformation function between the two data. The transformation function can transform TVDI maps into soil moisture maps with same unit of soil moisture from AMSR-E, and the spatial resolution of soil moisture maps transformed from TVDI is higher than soil moisture maps in AMSR-E. The comparison results between TVDI and AMSR-E show that these two dataset represent similar soil moisture condition in Taiwan, indicating that it is acceptable to use soil moisture maps from AMSR-E to transform TVDI maps into soil moisture maps. According to the analysis result of the transformed soil moisture maps, the soil moisture maps transformed from TVDI maps have high accuracy. Compare the result of soil moisture transformed from TVDI maps with or without separated regions, the soil moisture maps transformed from TVDI maps with separated regions have higher accuracy than the ones without separated regions.
關鍵字(中) ★ MODIS影像
★ 土壤含水量
★ TVDI指標
★ 台灣地區
關鍵字(英) ★ MODIS
★ Soil moisture
★ TVDI
★ Taiwan
論文目次 摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究動機和目的 1
1.2 論文架構 3
第二章 文獻回顧 4
第三章 研究資料與研究區域介紹 8
3.1 研究資料介紹 8
3.1.1 MODIS產品影像 8
3.1.2 AMSR-E產品影像 10
3.1.3 研究資料選取 12
3.2 研究區域介紹 15
第四章 研究方法 16
4.1 資料前處理 17
4.1.1 MODIS影像資料前處理 17
4.1.2 AMSR-E影像資料前處理 22
4.2 TVDI指標影像 23
4.3 TVDI指標與AMSR-E土壤含水量資料進行迴歸分析 33
第五章 成果與討論 38
5.1 TVDI與氣象站雨量資料比較 38
5.2 台灣地區TS-NDVI空間與TVDI指標影像 40
5.3 迴歸分析成果 62
第六章 結論與建議 80
6.1 結論 80
6.2 建議 81
參考文獻 83
參考文獻 陳正祥,「氣候之分類與分區」,農學季刊第七號,台大農學院實驗林,1957。
邱清安,林博雄,「由測站資料推估台灣之氣溫與降水之空間分布」,大氣科學,第32期第4號,pp.329– 350,2004。
萬怡,「臺灣氣候分類與山地氣候之研究」,國立台灣師範大學,碩士論文,2008。
Carlson, T., Gillies, R., Perry, E., “A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover”, Remote Sensing Reviews, 9, pp.161–173, 1994.
Chen, C. F., Son, N. T., Chang, L. Y., Chen, C. C., “Monitoring of soil moisture variability in relation to rice cropping systems in the VietnameseMekong Delta using MODIS data”, Applied Geography, 31, pp.463–475, 2011.
Dubois, P., van Zyl, J. J., Engman, T., “Measuring soil moisture with imaging radars”, IEEE Transactions on Geoscience and Remote Sensing, 33, pp.915–926, 1995.
Engman, T., “Application of microwave remote sensing of soil moisture for water resources and agriculture”, Remote Sensing of Environment, 35, pp. 213-226, 1991.
Fung, A. K., Li, Z., Chen, K. S., “Backscattering from a randomly rough dielectric surface”, IEEE Transactions on Geoscience and Remote Sensing, 30, pp.356–369, 1992.
Gillies, R., Carlson, T., Kustas, W., Humes, K., “A verification of the ’triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature”, International Journal of Remote Sensing, 18, pp.3145–3166, 1997.
Goward, S. N., Xue, Y., Czajkowski, K. P., “Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model”, Remote Sensing of Environment, 79, pp.225–242, 2002.
Hope, A., Engstrom, R., Stow, D., “Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems”, International Journal of Remote Sensing, Volume 26, Number 8 , pp. 1771-1776, 2005.
Ishida, T., Ando, H., Fukuhara, M., “Estimation of complex refractive index of soil particles and its dependence on soil chemical properties”, Remote Sensing of Environment, 38, pp.173–182, 1991.
Jackson, T. J., “III Measuring Surface Soil Moisture Using Passive Microwave Remote Sensing”, Hydrological Processes, 7, pp.139–152, 1993.
Li, Z., Wang, Y., Zhou, Q., Wu, J., Peng, L., Chang, H., “Spatiotemporal variability of land surface moisture based on vegetation and temperature characteristics in Northern Shaanxi Loess Plateau, China”, Journal of Arid Environments, 72, pp.974–985, 2008.
Mallick, K., Bhattacharya, B. K., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Banerjee, S., Kar, G., Rao, V. U. M., Gadgil, A. S., Parihar, J. S., “Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India”, International Journal of Remote Sensing, 28, pp.2091–2110, 2007.
Mallick, K., Bhattacharya, B. K., Patel, N. K., “Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI”, Agricultural and Forest Meteorology, 149, pp.1327–1342, 2009.
Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A., “Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index”, Remote Sensing of Environment, 49, pp.246–263, 1994.
Moran, M. S., Watts, J. M., Peters-Lidard, C. D., McElroy, S. A., “Estimating soil moisture at the watershed scale with satellite-based radar and land surface models”, Canadian Journal of Remote Sensing, 30(5), pp.805–826, 2004.
Muller, E., Décamps, H., “Modeling soil moisture-reflectance”, Remote Sensing of Environment, 76, pp.173–180, 2000.
Milan, O., Igor, M., “Fire-prone areas delineated from a combination of the Nesterov Fire-risk Rating Index with multispectral satellite data”, Applied Geomatics, 2, pp.1–7, 2010.
Njoku, E. G., Entekhabi, D., “Passive microwave remote sensing of soil moisture”, Journal of Hydrology, 184, pp.101–129, 1996.
Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., and Nghiem, S. V., “Soil moisture retrieval from AMSR-E”, IEEE Transactions on Geoscience and Remote Sensing, 41, pp. 215–229, 2003.
Patel, N. R., Anapashsha, R., Kumar, S., Saha, S. K., Dadhwal, V. K., “Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status”, International Journal of Remote Sensing, 30, pp. 23–39, 2009.
Planet, W. G., “Some comments on reflectance measurements of wet soils”, Remote Sensing of Environment, 1, pp.127–129, 1970.
Sandholt, I., Rasmussen, K., Andersen, J., “A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status”, Remote Sensing of Environment, 79, pp.213-224, 2002.
Walker, J., “Estimating Soil Moisture Profile Dynamics from Near-Surface Soil Moisture Measurements and Standard Meteorological Data”, The University of Newcastle, Australia, Ph.D. dissertation, 1999.
Wan, Z., Wang, P., & Li, X., “Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the Southern Great Plains, USA”, International Journal of Remote Sensing, 25, pp.61–72, 2004.
Xin, J., Tian, G., Liu, W. and Chen, L., “Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China”, International Journal of Remote Sensing, 27, pp. 2071-2075, 2006.
指導教授 陳繼藩(Chi-farn Chen) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明