博碩士論文 983202053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.15.1.129
姓名 羅欣蕙(Hsin-hui Lo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究
(Degradation behavior of the chloride and prediction for low-level radioactive wastes barrier of concrete.)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物處置設施之障壁主體由混凝土構成,但不同於一般混凝土結構物之用途,其服務年限需達數百年之久。此外由於台灣處於四面環海環境,使得低射性廢棄物處置場之場址可能位於濱海區域,處置場障壁混凝土長期處於此環境下,可能對混凝土造成劣化甚至影響其耐久性。
本研究主要探討混凝土材料受氯離子入侵之劣化,並使用氯離子濃度門檻值與信賴度的概念,預估鋼筋開始腐蝕之時間。以可能使用於高完整性承裝容器之H 配比、傳統配合設計方法ACI 配比與緻密配比,進行相關試驗與分析。
試驗結果顯示,低水膠比之混凝土內部結構較緻密,氯離子擴散路徑更為蜿蜒曲折,導致氯離子擴散係數較小,但氯離子在混凝土表層持續累積,造成曝露表層有較高的氯離子濃度。以擴散係數判別抵抗氯離子入侵之能力,H 配比優於ACI 配比。為推估氯離子引致之腐蝕劣化,依氯離子入侵濃度預估鋼筋開始腐蝕之時間,主要影響因素為擴散係數與時間m 因子。利用各配比於不同歷時時間濃度剖面進行殘差分析,並以信賴度之概念建立其擴散係數之區間,配合氯離子濃度門檻值與規範之保護層厚度,計算出鋼筋開始腐蝕之時間。
摘要(英) The structure of low-level radioactive waste disposal sites is mainly made of concrete. Different from the general purpose of concrete structures, the service life of the disposal sites is expected to be hundreds of years. In addition, Taiwan is surrounded by ocean, which suggests the disposal sites may be subject, therefore vulnerable, to the environment. When the disposal sites are exposed to such a condition in a long term, it may cause concrete deterioration and reduces its durability.
This study focuses on the effect of chloride on concrete, and uses the chloride threshold to predict the time to initial corrosion of steel in concrete. Test and analysis include: 1) high integrity container of H mixture, 2) traditional ACI mixture and 3) denser mixture designs.
The results show concrete internal structures with a low water-binder ratio are more compact, resulting in a lower chloride ion diffusion coefficient. However, chloride continuously accumulates, which causes a higher concentration on the surface. Based on the diffusion coefficient, H mixture is better than ACI mixture. To estimate the time to initial corrosion caused by chloride, two main factors are taken into consideration: the diffusion coefficient and time - m factor. Concentration profiles of chloride at different times are used for residual analysis. To define the acceptable range of the diffusion coefficient, we look into the threshold of the chloride concentration and the thickness of concrete, and further estimate the time to initial corrosion of steel in concrete.
關鍵字(中) ★ 鋼筋腐蝕預估
★ 氯離子濃度剖面
★ 擴散係數
關鍵字(英) ★ Diffusion coefficient
★ Chloride concentration
★ Prediction
論文目次 圖目錄 iii
表目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 低放射性廢棄物最終處置設施 5
2.2 氯離子侵蝕 9
2.2.1 離子的擴散機制 10
2.2.2氯離子於混凝土內部之型態 12
2.2.3氯離子入侵之模式 13
2.2.4卜作嵐材料對抵抗氯離子入侵之影響 13
2.2.5孔隙結構對混凝土之影響 14
2.2.6氯離子擴散係數與濃度 17
2.2.7氯離子濃度門檻值 21
2.3 失鈣劣化行為 23
2.3.1 失鈣劣化之過程與機理 23
2.3.2 失鈣劣化對孔隙結構的影響 25
2.3.3 影響失鈣劣化之因素 27
2.3.4 失鈣劣化程度 28
2.4 鋼筋混凝土腐蝕推估 29
2.4.1 程式Life-365概述 30
2.4.2 程式4SIGHT概述 33
第三章 實驗計畫 37
3.1 實驗材料 37
3.2 主要實驗設備 42
3.3 實驗內容與方法 46
3.3.1 實驗流程 46
3.3.2 實驗變數 48
3.3.3 實驗方法 53
第四章 實驗結果與分析 59
4.1 抗壓強度 59
4.1.1 ACI配比混凝土之抗壓強度發展 60
4.1.2 緻密配比混凝土之抗壓強度發展 61
4.2 氯離子入侵濃度量測及分析 62
4.2.1 不同配比混凝土之濃度剖面 62
4.2.2 非線性迴歸分析之氯離子表面濃度與擴散係數 68
4.3 鋼筋混凝土腐蝕推估 78
4.3.1 實驗數值與信賴度 79
4.3.2 經驗公式 90
4.3.3 比較分析 93
4.4 溶出失鈣 97
4.4.1 掃描式顯微鏡SEM之能量分散光譜儀EDS分析 98
4.4.2 晶相微觀分析 101
第五章 結論與建議 105
5.1 結論 105
5.2 建議 106
參考文獻 109
附錄 117
參考文獻 王茂齡(1987),輸送現象,高立圖書有限公司。
行政院原子能委員會,http://www.aec.gov.tw/。
環境保護署 全國環境水質監測資訊網,http://wqshow.epa.gov.tw/。
台灣電力(股)公司(2007),低放射性廢棄物最終處置計畫書(修訂版)。
台灣電力(股)公司(2008),蘭嶼貯存場貯存設施十年再評估報告。
台灣電力(股)公司(2011),核能後端營運處蘭嶼貯存場99年運轉年報。
李俞鋆(2004),「硒銫在花崗岩上地下水中的吸附與擴散行為」,碩士論文,國立清華大學原子科學系,新竹。
林惠玲、陳正倉(2007),統計學-方法與應用,雙葉書廊有限公司。
林冠亨(2004),「使用氯化鈉溶液浸漬試驗(Ponding test)探討混凝土之擴散行為」,碩士論文,國立台灣海洋大學材料工程研究所,基隆。
柳宏儒(2011),「鈣離子浸析行為對水泥基質材料抗壓性及耐久性之研究」,碩士論文,國立宜蘭大學建築與永續規劃研究所,宜蘭。
黃兆龍(1999),混凝土性質與行為,詹氏書局。
邱怡瑄(2009),「低放處置場工程障壁之溶出失鈣及劣化敏感度分析」,碩士論文,國立中央大學土木工程研究所,中壢。
陳順宇、郭碧娥(2004),統計學,華泰書局。
陳仕豪(2010),「氯離子入侵混凝土之擴散係數時間效應與飛灰之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
盧秉瑋(2006),「混凝土工程障壁之氯離子及失鈣劣化行為」,碩士論文,國立中央大學土木工程研究所,中壢。
4SIGHT (URL):http://concrete.nist.gov/4sight/
DataFit (URL):http://www.curvefitting.com/
Life-365 (URL):http://www.life-365.org/
AASHTO T259 (1990), “Resistance of concrete to chloride ion penetration.” AASHTO Designation.
AASHTO T260 (1997), “Sampling and testing for chloride ion in concrete and concrete raw materials.” AASHTO Designation.
ACI Committee 349-97 (1997), “Code requirements for nuclear safety related concrete structures.” ACI Manual of Concrete Practice.
ASTM C 642-97 (1997), “Standard test method for density, absorption, and void in hardened concrete.” ASTM Designation.
Alonso, C., Castellote, M., Llorente, I., and Andrade, C. (2006), “Ground water leaching resistance of high and ultra high performance concretes in relation to the testing convection regime.” Cement and Concrete Research, Vol. 36, pp. 1583-1594.
Agostini, F., Lafhaj, Z, Skoczylas, F., and Loodsveldt, H. (2007), “Experimental study of accelerated leaching on hollow cylinders of mortar.” Cement and Concrete Research, Vol. 37, pp. 72-78.
Bäumel, A. (1959), “Die auswirkung von betonzusatzmitteln auf das korrosionsverhalten von stahl in beton. ” Zement-Kalk-Gips, Vol.7, pp. 294-305.
Brandt, A. M. (1995), Cement-based Composites: Material, Mechanical Properties and Performance., E & FN SPON, U. K..
Bai, J., Wild, S., and Sabir, B. B. (2003), “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp.353-362.
Crank, J. (1975), The Mathematics of Diffusion., Oxford University Press, Oxford.
Carde, C.and Francois, R. (1997), “Effect of the leaching of calcium hydroxide cement paste on mechanical and physical properties.” Cement and Concrete Research, Vol. 27, pp. 539-550.
Hansson, C. M. and Sorensen, B. (1988), “The threshold concentration of chloride in concrete for initiation of reinforcement corrosion. In: N. Berke, V. Chaker and D. Whiting, Editors.” Corrosion Rates of Steel in Concrete ASTM Spec Tech Publish, pp. 3-16.
Heukamp, F. H., Ulm, F. J., and Germaine, J. T. (2001), “Mechanical properties of calcium-leached cement pastes triaxial stress states and the influence of the pore pressures.” Cement and Concrete Research, Vol. 31, pp. 767-774.
Kamali, S., Gerard, B., and Moranville, M. (2003), “Modelling the leaching kinetics of cement-based materials - influence of materials and environment.” Cement and Concrete Composites, Vol. 25, pp. 451-458.
Locke, C. E. and Siman, A. (1980), “Electrochemistry of reinforcing steel in salt-contaminated concrete, in: D. E. Tonini, J. M. Gaidis (Eds.), corrosion of reinforcing steel in concrete ASTMSTP 713. ” American Society for Testing and Materials, pp. 3-16.
Lambert, P., Page, C. L., and Vassie, P. R. W. (1991), Materials and Structurera, pp. 351-358.
Leng, F., Feng, N., and Lu, X. (2000), “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace salg concrete.” Cement and Concrete Research, Vol. 30, pp. 989-992.
Mehta, P. K. (1986), Concrete Structure Properties and Materials., Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A..
Morris, W., Vico, A. and Vázquez, M. (2004), “Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements.” Electrochimica Acta, pp. 4447-4453.
Michelle, N., Andrea, B., Hooton, R. D., and Thomas, M. D. A. (2006), “Time dependent diffusion in concrete-three laboratory studies.” Cement and Concrete Research, Vol. 36, pp. 200-207.
Manera, M., Vennesland, Ø. and Bertolini, L. (2008), “Chloride threshold for rebar corrosion in concrete with addition of silica fume.” Corrosion Science, pp. 554-560.
Nilsson, L., Poulsen, E., Sandberg, P. H., Sorensen, E., and Klinghoffer, O. (1996), “Chloride penetration into concrete, state-of-the-art, transport processes, corrosion initiation, test methods and prediction models.” The Road Directorate, Copenhagen.
Nygaard, P. V. and Geiker, M. R. (2005), “A method for measuring the chloride threshold level required to initiate reinforcement corrosion in concrete.” Materials and Structures, pp. 489-494.
Oh, B. H., Jang, S. Y. and Shin, Y. S. (2003), “Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures.” Magazine of Concrete Research, pp. 117-124.
Schiessl, P. and Raupach, M. (1990), “Influence of concrete composition and microclimate on the critical chloride content in concrete. ” Elsevier Applied Science, pp. 49-58, Wishaw, UK.
Sherman, R. M., David, M. B., and Pfeifer, D. W. (1996), “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Schiessl, P. and Breit, W. (1996), “Local repair measures at concrete structures damaged by reinforcement corrosion- aspects of durability. ” The Royal Society of Chemistry, pp. 525-534.
Sandberg, L., Tang, L, and Andersen, A. (1998), “Recurrent studies of chloride ingress in uncracked marine concrete at various exposure times and elevations.” Cement and Concrete Research, Vol. 28, pp. 1489-1503.
Saito, H. and Nakane, S. (1999), “Comparison between diffusion test and electrochemical acceleration test for leaching degradation of cement hydration products.” ACI Material Journal, Vol. 96, pp. 208-212.
Saito, H. and Deguchi, A. (2000), “Leaching tests on different mortar using accelerated electrochemical method.” Cement and Concrete Research, Vol. 30, pp. 1815-1825.
Saito, H., Tsuji, Y. and Kataoka, H. (2000), “A model for predicting degradation due to dissolution of cement hydrate.” Transaction of the Japan Concrete Institute, Vol. 22, pp. 119-130.
Stanish, K. D., Hooton, R. D., and Thomas, M. D. A. (2000), “Testing the chloride penetration resistance of concrete:a literature review.” Federal Highway Administration.
Seng, C. K. and Hong, Z. M. (2002), “Water permeability and chloride penetrability of high-strength lightweight aggregate concrete.” Cement and Concrete Research, Vol. 32, pp. 639-645.
Tuutti, K. (1982), Corrosion of Steel in Concrete., Swedish Cement and Concrete Research Institute, Stockholm.
Treadaway, K. W. J., Cox, R. N., and Brown, B. L. (1989), Proc. Inst. Civil Engnrs Part 1., pp. 305-332.
Tuutti, K. (1993), Concrete 2000., E and FN Spon, London.
Thomas, M. (1996), “Chloride threshold in marine concrete.” Cement and Concrete Research, Vol. 26, pp. 513-519.
Tritthart, J. and Cavlek, K. (2000), “Determination of total and free chloride in cement paste and concrete.” RILEM Proceedings, Pro 19, pp.429-437.
Walton, J. C., Plansky, L. E., and Smith, R. W. (1990), “Models for estimation of service life of concrete barriers in low-level radioactive waste disposal.” Idaho National Engineering Laboratory EG&G Idaho, pp. 15
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete., Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zibara, H. R., Pérezfki, B., Hooton, D. M., and Thomas, D. A. (2000), “A study of the effect of chloride binding on service life predictions.” Cement and Concrete Research, Vol. 30, pp. 1215-1223.
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明