博碩士論文 92342007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:13.58.188.166
姓名 王年福(Nian-Fu WANG)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究
(The research on poly acrylic esters made from different alcohols applied to the cement matrix.)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究★ 經高溫製程產生含矽再生粒料之鹼質活性研究
★ 改質人工粒料的應用策略基礎研究★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究
★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討
★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究★ 改質人工粒料取代天然細粒料對混凝土性質的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聚合物應用於水泥基材以改善其性能,是有機與無機複合材料的發展趨勢,也取得了一定的成效,但如何對聚合物在產生與應用上的關聯性進行整合,讓有機聚合物領域的研究者更瞭解應用使用者的需求;也相對讓無機領域的水泥基材使用者,能從使用成效的觀點,對原本陌生的聚合物提供一些建議,達成不斷轉動P(Plan-計劃)-D(Do-實施)-C(Check-查驗)-(Action-改善行動)的良性改善循環,有效提高研究互動與提昇產品成效,其重要性高於個別領域的單打獨鬥,本研究以聚丙烯酸酯為介質,從系列的規劃,透過基本的反應取得,到試驗室分析測試評估,再進行改善,完成了良好的研究循環,除獲致了初步的成效外,也提供了良好的模版。
在以乙醇、乙二醇、二乙二醇等三種醇類製成聚丙烯酸酯(Poly Acrylic Ester , PAE),透過粉體特性及進一步的新拌及硬固漿體篩選程序,顯示聚丙烯酸乙二酯粉體與促進劑的組合摻用具有30~60分鐘緩凝效果,同時增加新拌水泥漿體流動性,尤其長時間(90~120分鐘)的流動性增加5~10%;吸水率與吸水膨脹率亦有效減少;但在強度上則成效不佳,此說明在應用上,粉體聚合物受到一定的限制。
在以乙醇、乙二醇、二乙二醇、月桂醇及硬脂醇等五種醇類與聚丙烯酸進行酯化反應而得的液態聚丙烯酸酯。試驗結果綜合評估顯示,酸-醇莫爾比為0.2的聚丙烯酸乙二酯,最具改質成效,同時以0.1%為最佳添加量,改質後,相對於控制組,水泥漿、水泥砂漿與水泥混凝土28天抗壓強度分別提升12.7%、8.6%與9.9%,水泥砂漿的28天抗彎與粘結強度分別提升10.0%與73.9%;同時水泥砂漿在流動性有效增加9.8%、吸水率減少10.8%、各齡期乾燥收縮(長度變化)有效減少7.1%~14.5%、健性試驗的最終重量損失率則減少23.4%﹔此外,改質混凝土超音波波速試驗的波速增加6.9%、動彈性模數增加33.3%、快速氯離子穿透試驗(RCPT)56天齡期試體6小時累積通電量降低19.8%,顯示了耐久性與緻密性的提昇。SEM觀測也印證實聚丙烯酸酯薄膜在改質水泥基材中的形成。
在以乙醇、乙二醇、二乙二醇等三種醇類,透過酸-醇比、溫度、時間、催化劑等參數探討及純化處理的優化研究中,綜合試驗結果顯示,較高的反應溫度(90 oC)、適度的反應時間(60分鐘)、適量的催化劑濃度(酸醇總重量1 %),可獲致改質成效最佳的聚丙烯酸乙二酯和聚丙烯酸二乙二酯,同時其最佳酯化率分為17.87 %(乙二醇莫耳比為0.271時)及19.66 %(二乙二醇莫耳比為0.291時);純化則以1.0 %雙氧水劑量為佳,同時以聚丙烯酸二乙二酯的改質成效最佳,並以0.1%為最佳添加量,改質後,相對於控制組,水泥漿、水泥砂漿與水泥混凝土28天抗壓強度分別提升14.8%、15.1%與14.1%,水泥砂漿的28天抗彎與粘結強度分別提升12.1%與116.7%;同時流動性有效增加,減水效果達6.2%;各齡期乾燥收縮(長度變化)有效減少36.2%~52.7%、健性試驗的最終重量損失率則減少15.4%﹔此外,改質混凝土各齡期超音波波速試驗的波速增加0.9%~5.6%﹔快速氯離子穿透試驗(RCPT)28天齡期試體6小時累積通電量降低2.82%,顯示了耐久性與緻密性的提昇。混凝土模擬火害窯燒試驗的試體強度折減改善39.3%,也證實了其可延長混凝土受高溫環境下的抵抗能力。
最終,以性價比評估結果顯示,優化後的液體聚合物改質水泥砂漿,其性價比明顯高於普通水泥砂漿,最高者甚至可達3倍以上。
摘要(英) The polymer used in the cement matrix to improve its performance is seen as the development trends of organic and inorganic compound materials, and it also achieves some success. However, it is more important to integrate the connection between the generation and application of polymers than to research individually in the respective field. It can make the researchers in the organic polymer field understand better the needs of the users; relatively, it also makes the users in the inorganic cement matrix, who are originally strange to polymers, from the viewpoint of using effectiveness, offer some suggestions to achieve continuous rotation P (Plan) - D (Do) - C (Check) - (Action). It is a benign improving cycle that effectively improves the research interaction and enhances the products. In this study, acrylic ester is used for the medium, from series of planning, acquisition of the ester through basic reaction, to the analysis test assessment in the laboratory, and further improvement. In this way, we complete a good research cycle. In addition to the preliminary effectiveness, we also provide a good template.
The test results of powder-polymer mortar showed that the powder-polymer mixed with the accelerator had a 30-60 minute retarding effect, which could increase the flowability of modified mortar, especially for a long time (90 ~120 minutes) with the increasing flowability of 5 to 10%; in part experimental conditions, the polymer modified cement mortar had increasing effects on Flexural and compressive strength; the water-absorptivity and the water-absorbing expansion rate also effectively reduced. Besides, it was found, with different types and dosages of the superplasticizers which were mixed to control the equally initial fluidity, the powder- polymer would affect the effectiveness of the cement mortar.
From the esterification of acrylic acid and three different kinds of alcohols,ethanol, ethylene glycol and diethylene glycol, we got Poly Acrylic Ester (PAE). Through the powdered characteristics and the screening process of fresh mixed and hardened paste, the test results showed that glycol acrylate powdered polymer mixed with the accelerator had a 30-60 minute retarding effect, which could increase the flowability of fresh mixed mortar, especially for a long time (90 ~120 minutes) with the increasing flowability of 5 ~10%; the water-absorptivity and the water-absorbing expansion rate also effectively reduced. But it was not so good in strength, showing that the powdered polymer had certain restrictions when it was applied.
From the esterification of acrylic acid and five different kinds of alcohols,ethanol,ethylene glycol,diethylene glycol,lauryl alcohol and stearyl alcohol, we got Poly Acrylic Ester polymer in liquid. Compressive assessment test results showed that at the acid-alcohol mole ratio of 0.2, glycol acrylate polymer had the most effective modification,and the hardened properties were the best with the additive of 0.1%. Compared with the control group,after modification,the 28-day compressive strength of the modified cement paste,mortar and concret improved separately by 12.7%, 8.6% and 9.9%; the 28-day flexural strength and adhensive strength of the modified mortar improved separately by 10.0% and 73.9%;besides,the flowability of the modified mortar effectively increased by 9.8%, and 10.8% less water absorption; the dry shrinkages of different ages (length change) effectively decreased by 7.1%-14.5%, and the perventage of final weight loss of the soundness test decreased by 23.4%. In addition,in the supersonic velocity test, the velocity of the modified mortar improved by 6.9%, the dynamic elastic modulus by 33.3%, and in the rapid chloride ion penetration test (RCPT), 6-hour cumulative passing electricity of the 56-day-age specimen decreased by 19.8%, showing its promotion of durability and compactness. The SEM observation also confirmed that the PAE’s membrane formed in the modified cement matrix.
Purified by the three alcohols,ethanol,ethylene glycol and diethylene glycol,and through acid-alcohol ratio,temperature,time,catalyst and other parameters,we probed into the optimized study of purification. The comprehensive test results showed that we could get the best modified Glycol Acrylate and Diethylate glycol Acrylate with higher reaction temperature (90 ℃), moderate reaction time (60 minutes) and the right amount of concentration of catalyst (1% of the total weight of acid and alcohol). The best esterification rate is respectively 17.87% (at the ethylene glycol mole ratio of 0.271) and 19.66% (at the diethylene glycol mole ratio of 0.291 ). We got the best purification by adding 1.0% dose of hydrogen peroxide and Diethylate glycol Acrylate polymer had the most remarkable effect of modification by the additive of 0.1%. Compared with the control group,after modification,the 28-day compressive strength of the modified cement paste,mortar and concret improved separately by 14.8%, 15.1% and 14.1%; the 28-day flexural strength and adhensive strength of the modified mortar improved separately by 12.1% and 116.7%.Besides,the flowability of the modified mortar effectively increased by 6.3% less water absorption; the dry shrinkages of different ages (length change) effectively decreased by 36.2%~52.7%, and the perventage of final weight loss of the soundness test decreased by 15.4%. In addition,in the supersonic velocity test, the velocity of the modified mortar improved by 0.2%~5.9%, the dynamic elastic modulus by 33.3%, and in the rapid chloride ion penetration test (RCPT), 6-hour cumulative passing electricity of the 28-day-age specimen decreased by 2.82%, showing its promotion of durability and compactness. In the concrete fire damage kiln simulation experiments,the strength reduction of the specimen improved by 39.3%, also confirming that it could prolong the concrete resistant strength under high temperature.
Ultimately, the performance-cost assement results show that the optimized liquid polymer modified cement mortar, its performance-cost value is higher than that of ordinary Portland cement mortar, the highest or even up to 3 times.
關鍵字(中) ★ 水泥基材
★ 酯化反應
★ 聚丙烯酸酯
關鍵字(英) ★ Poly Acrylic Ester
★ esterification reaction
★ cement matrix
論文目次 第一章 緒論
1.1 研究動機 .............................................. 1
1.2 研究目的 .............................................. 1
1.3 研究內容 .............................................. 2
第二章 文獻回顧
2.1 應用於水泥系材料聚合物的發展 .......................... 5
2.1.1 聚合物發展沿革 ...................................... 5
2.1.2 聚合物水泥複合材料發展歷史 .......................... 5
2.1.3 聚合物砂漿(混凝土)在國際上的發展 .................... 6
2.2 聚合物水泥複合材料類型 ................................ 8
2.2.1 聚合物應用類型 ...................................... 8
2.2.2 應用於改質水泥基材的聚合物類型 ...................... 10
2.3 聚合物與水泥系材料的反應與改質機理 .................... 13
2.3.1 聚合物與水泥的物理性反應 ............................ 13
2.3.2 聚合物與水泥的化學性反應 ............................ 13
2.3.3 聚合物改質機理模式 .................................. 14
2.3.4 丙烯酸系聚合物與水泥的改質機理 ...................... 20
2.4 丙烯酸系聚合物應用於水泥系材料的發展 .................. 21
2.4.1 丙烯酸系聚合物的優勢 ................................ 21
2.4.2 水溶性聚合物摻量對改質效用的限制 .................... 22
2.4.3 丙烯酸系聚合物改質應用相關文獻概述 .................. 23
第三章 試驗計畫與研究方法
3.1 試驗規劃 .............................................. 27
3.1.1 粉體聚丙烯酸酯製作與應用評估流程 ................... 27
3.1.2 液態聚丙烯酸酯製作與應用評估流程 ................... 28
3.1.3 聚丙烯酸酯優化研究與應用評估流程 ................... 29
3.2 試驗材料 .............................................. 30
3.3 試驗設備及器材 ........................................ 32
3.4 試驗項目及方法 ........................................ 39
3.4.1 聚丙烯酸酯製備方法 .................................. 41
3.4.2 聚丙烯酸酯試驗 ...................................... 42
3.4.3 水泥漿試驗 .......................................... 45
3.4.4 水泥砂漿試驗 ........................................ 47
3.4.5 混凝土試驗 .......................................... 54
3.5 實驗流程與變數 ........................................ 58
3.5.1 第一階段-粉體聚丙烯酸酯製作與應用評估之流程與變數 .... 58
3.5.2 第二階段-液態聚丙烯酸酯製作與應用評估之流程與變數 .... 63
3.5.3 第三階段-液態聚丙烯酸酯優化與應用評估之流程與變數 .... 67
第四章 粉體聚丙烯酸酯製作與應用評估
4.1 粉體聚丙烯酸酯製作與篩選 .............................. 74
4.1.1 聚丙烯酸酯製作及粉體特性篩選 ........................ 74
4.1.2 粉體聚丙烯酸酯強度篩選 .............................. 75
4.2 粉體聚丙烯酸酯應用評估-新拌水泥砂漿 ................... 76
4.2.1 流度 ................................................ 77
4.2.2 凝結時間 ............................................ 80
4.3 粉體聚丙烯酸酯應用評估-硬固水泥砂漿 ................... 81
4.3.1 強度 ................................................ 81
4.3.2 體積變化 ............................................ 90
4.3.3 吸水率 .............................................. 94
4.3.4 吸水速率 ............................................ 95
4.4 小結 ................................................... 99
第五章 液態聚丙烯酸酯製作與應用評估
5.1 酯化製備液態聚丙烯酸酯的產物特性 ..................... 100
5.2 液態聚丙烯酸酯應用評估-改質水泥漿 .................... 102
5.2.1 新拌漿體表觀 ........................................ 102
5.2.2 新拌漿體工作性-迷你坍流面積(mini-slump) ............. 103
5.2.3 新拌漿體工作性-流動時間(Marsh cone) ................. 105
5.2.4 凝結時間 ............................................ 108
5.2.5 硬固漿體抗壓強度 .................................... 110
5.2.6 聚丙烯酸酯酯化率的影響 .............................. 115
5.2.7 聚丙烯酸酯型態及pH值的影響 ......................... 117
5.3 液態聚丙烯酸酯應用評估-改質水泥砂漿 .................. 118
5.3.1 砂漿流度值 .......................................... 118
5.3.2 吸水率 .............................................. 120
5.3.3 抗彎強度 ............................................ 121
5.3.4 抗壓強度 ............................................ 123
5.3.5 黏結強度 ............................................ 124
5.3.6 乾燥收縮 ............................................ 126
5.3.7 健性 ................................................ 128
5.4 液態聚丙烯酸酯應用評估-改質水泥混凝土 ................ 130
5.4.1 新拌性質-單位重、坍度、含氣量 ....................... 130
5.4.2 抗壓強度 ............................................ 131
5.4.3 超音波波速量測 ...................................... 132
5.4.4 動彈性模數量測 ...................................... 133
5.4.5 快速氯離子穿透試驗(RCPT) ............................ 134
5.4.6 微觀分析 ............................................ 136
5.5 小結 .................................................. 137
第六章 液態聚丙烯酸酯優化與應用評估
6.1 優化(酯化與純化)控制參數 .............................. 142
6.1.1 反應溫度與反應時間 .................................. 142
6.1.2 催化劑濃度 .......................................... 144
6.1.3 酯化率與最佳酯化率 .................................. 145
6.1.4 純化的確認 .......................................... 147
6.2 優化液態聚丙烯酸酯應用評估-改質水泥漿 ................ 147
6.2.1 新拌漿體表觀 ........................................ 147
6.2.2 新拌漿體工作性-流動時間(Marsh cone) ................. 148
6.2.3 新拌漿體工作性-迷你坍流面積(mini-slump) ............. 151
6.2.4 凝結時間 ............................................ 154
6.2.5 抗壓強度 ............................................ 158
6.3 優化液態聚丙烯酸酯應用評估-改質水泥砂漿 .............. 160
6.3.1 新拌水泥砂漿含氣量 .................................. 160
6.3.2 減水效能 ............................................ 161
6.3.3 吸水率 .............................................. 163
6.3.4 抗彎強度 ............................................ 165
6.3.5 抗壓強度 ............................................ 168
6.3.6 粘結強度 ............................................ 171
6.3.7 健性 ................................................ 173
6.3.8 乾燥收縮 ............................................ 174
6.4 優化液態聚丙烯酸酯應用評估-改質水泥混凝土 ............ 176
6.4.1 新拌混凝土性質 ...................................... 176
6.4.2 抗壓強度 ............................................ 177
6.4.3 超音波波速量測 ...................................... 178
6.4.4 快速氯離子穿透試驗(RCPT) ............................ 179
6.4.5 模擬火害窯燒試驗 .................................... 180
6.5 小結 .................................................. 182
第七章 聚丙烯酸(酯)聚合物應用調查分析
7.1 商品化丙烯酸(酯)聚合物的應用特性與範圍 ................ 186
7.2 應用調查 .............................................. 188
7.2.1 實際應用調查-臺灣 ................................... 188
7.2.2 實際應用調查-中國大陸 ............................... 192
7.2.2 實際應用調查-其他國家 ............................... 195
7.3 經濟效益分析 .......................................... 199
7.3.1經濟效益分析模式-性價比 .............................. 200
7.3.2 本論文研究對象的經濟效益分析 ........................ 201
7.4 小結 .................................................. 203
第八章 結論與建議
8.1 結論 .................................................. 206
8.2 建議 .................................................. 212
參考文獻 1. Fowler, D.W., “Polymer in concrete:a vision for the 21st century,” Cement and Concrete Composites, Vol 21, No. 5, pp. 449-452 (1999).
2. Ohama, Y., “Recent progress in concrete-polymer composites,” Advn Cem Bas Mat., Vol. 5, pp. 31-40 (1997).
3. Ohama, Y., “Polymer-based admixyures,” Cement and Concrete Composites, Vol. 20, NO. 2, pp. 189-212 (1998).
4. The Dow Chemical Company, http://www.dow.com/ .
5. 徐武軍,「高分子材料導論」,台北五南圖書出版(股)公司 (2004)。
6. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars,” Cement and Concrete Research, Vol. 33, No. 11, pp. 1715-1721 (2003).
7. Schulze, J., and Killermann, O., “Long-term performance of redispersible powders in mortars,” Cement and Concrete Research, Vol. 31, No. 3, pp. 357-362 (2001).
8. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere,” Cement and Concrete Research, Vol. 31, No. 11, pp. 1643-1645 (2001).
9. Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., and Ibrahim, M., “Mechanical properties and durability characteristics of polymer- and cement-based repair materials,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 527-537 (2003).
10. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Hydrogarent-type cubic crystals in polymer-modified martars,” Cement and Concrete Research, Vol. 27, No.12, pp. 1787-1789 (1997).
11. Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on portland cement hydration,” Cement and Concrete Research, Vol. 17, No. 6, pp. 875-890 (1987).
12. Sakai, E., and Sugita, J., “Composite mechanism of polymer modified cement,” Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135 (1995).
13. Mindess, S., Young, J. F., and Darwin, D., Concrete. 2nd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 583-598 (2002).
14. Fu, X., and Chung, D. L., “Submicron carbon filament cement-matrix composites for electromagnetic interference shielding,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1467-1472 (1996).
15. Fichet, R. O., Gauthier, C., Clamen, G., and Boch, P., “Microstructural aspects in a polymer-modified cement” , Cement and Concrete Research, Vol. 28, No. 12, pp. 1687-1693 (1998).
16. D.A. Silva, V.M. John, J.L.D. Ribeiro, H.R. Roman,” Pore size distribution of hydrated cement pastes modified with polymers”, Cement and Concrete Research 31 , pp. 1174-1184 (2001).
17. Rha, C. Y., Kim, C. E., Lee, C. S., Kim, K. I., and Lee, S. K., “Preparation and characterization of absorbent polymer-cement composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 231-236 (1999).
18. Silva, D. A., and Monteiro, P. J. M., “The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy,” Cement and Concrete Research, Vol. 36, No. 8, pp. 1501-1507 (2006).
19. Silva, D. A., John, V. M., Ribeiro, J. L. D., and Roman, H. R., “Pore size distribution of hydrated cement pastes modified with polymers,” Cement and Concrete Research, Vol. 31, No. 8, pp. 1177-1184 (2001).
20. Kim, J. H., and Robertson, R. E., “Prevention of air void formation in polymer-modified cement mortar by pre-wetting,” Cement and Concrete Research, Vol. 27, No. 2, pp. 171-176 (1997).
21. Gorninski, J. P., Molin, D. C., and Kazmierczak, C. S., “Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete,” Cement and Concrete Research, Vol. 34, No. 11, pp. 2191-2195 (2004).
22. Jenni, A., Holzer, L., Zurbriggen, R., and Herwegh, M., “Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars,” Cement and Concrete Research, Vol. 35, No. 1, pp. 35-50 (2005).
23. Beeldens, A., Monteny, K., Vincke, E., Belie, N. D., Gemert, D. V., Taerwe, L., and Verstraete, W., “Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars,” Cement and Concrete Composites, Vol. 23, No. 1, pp. 47-56 (2001).
24. Martinez-Ramirez, S., Zamarad, A., Thompsonb, G. E., and Moore, B., “Organic and inorganic concrete under SO2 pollutant exposure,” Cement and Concrete Research, Vol. 37, No. 10, pp. 933-937 (2002).
25. Vincke, E., Wanseele, E. V., Monteny, J., Beeldens, A., Belie, N. D., Taerwe, L., Gemert, D. V., and Verstraete, W., “Influence of polymer addition on biogenic sulfuric acid attack of concrete,” International Biodeterioration & Biodegradation, Vol. 49, pp. 283 - 292 (2002).
26. Monteny, J., Belie, N., Vincke, E., Verstraete, W., and Taerwe, L., “Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete,” Cement and Concrete Research, Vol. 31, No. 9, pp. 1359-1365 (2001).
27. 馬齊文,「粉體組成對活性粉混凝土微巨觀力學性質之影響與高分子改質之效益」,國立台灣大學土木工程學研究所博士論文 (2005)。
28. Rodrigues, F. A., and Joekes, I., “Macro-defect free cements- a new approach,” Cement and Concrete Research, Vol. 28, No. 6, pp. 877-885 (1998)..
29. Santos, R. S., Rodrigues, F. A., Segre, N., and Joekes, I., “Macro-defect free cements Influence of poly(vinyl alcohol), cement type, and silica fume,” Cement and Concrete Research, Vol. 29, No. 5, pp. 747–751 (1999).
30. Schulze, J., “Influence of water-cement ratio and cement content on the properties of polymer-modified mortars,” Cement and Concrete Research, Vol. 29, No. 6, pp. 909-915 (1999).
31. Drabik, M., Mojumdar, S. C., and Galikova, L., “Change of thermal events of macro defect-free (MDF) cements due to the deterioration in the moist atmosphere,” Cement and Concrete Research, Vol. 31, No. 5, pp. 743-747 (2001).
32. Walters, D. G., “Comparison of latex-modified portland cement mortars,” ACI Materials Journal, Vol. 87, No. 4, pp. 371-377 (1990).
33. Gao, J. M., Qian, C. X., Wang, B., and Morino, K., “Experimental Study on Properties of Polymer-Modified Cement Mortars with Silica Fume,” Cement and Concrete Research, Vol. 32, No. 1, pp. 41-45 (2002).
34. 林世堂,「摻料對水泥基複合材料早期收縮開裂敏感性之探討」,國立海洋大學材料工程研究所博士論文 (1999)。
35. Ole Mejlhede Jensen, Per Freiesleben Hansen,“Water-entrained cement-based materials I. Principles and theoretical background”, Cement and Concrete Research 31 647-654(2001).
36. 郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學研究所博士論文 (2000)。
37. Kantro, D. L., “Influence of water-Reducing admixtures on properties of cement paste - a miniature slump test,” Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-108 (1980).
38. 黃國祥,「羧酸強塑劑於水泥砂漿中最佳劑量之研究」,國立屏東科技大學土木工程系碩士論文 (2003)。
39. Hall, C.,”Water movement in porous building materials - IV. the. initial surface absorption and the sorptivity.” Building and Enviornment, 16(3), 201-207(1981).
40. Hall, C.” Water sorptivity of mortars and concrete: a review.” Magazine of Concrete Research, 41(147), 51-61(1989).
41. 冯乃谦,「高性能混凝土结构」,北京机械工业出版社(2004)。
42. 陆金平译,「聚合物混凝土的现状」,国外建筑与城乡建设(1989)(1).
43. 沈春林,「聚合物水泥防水涂料」,北京化学工业出版社(2003)。
44. 肖力光译,「聚合物混凝土在世界范围的应用」(1990)。
45. 忻秀卿,「聚合物混凝土复合材料的技术进展」,新型建筑材料(1995)(2)。
46. 肖力光译,「使用重新分散聚合物粉末的聚合物—改性砂浆的性能」,国外建筑与城乡建设,(1995)(2)。
47. 傅德海 赵四渝 徐洛屹,「干粉砂浆应用指南」,中国建材工业出版社(2006)。
48. 周世藻,陈世源,「未来混凝土的发展方向—聚合物混凝土」,硅酸盐学报,1994(4).
49. Hwai-chung wu, Yun Mook Lim, V. C. Li., “Application of Recycled Tire Cord in Concrete for Shrinkage Crack Control. ”Jornal of Materials Science Letters(1996).
50. Arun Pratap, ”Vinyl ester and Acrylic based Polymer concrete for electrical applications”(2002).
51. E.P.普罗德曼,「聚合物基体复合材料中的界面」,北京中国建筑工业出版社(1979)。
指導教授 李釗(Jhao Li) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明