摘要(英) |
The polymer used in the cement matrix to improve its performance is seen as the development trends of organic and inorganic compound materials, and it also achieves some success. However, it is more important to integrate the connection between the generation and application of polymers than to research individually in the respective field. It can make the researchers in the organic polymer field understand better the needs of the users; relatively, it also makes the users in the inorganic cement matrix, who are originally strange to polymers, from the viewpoint of using effectiveness, offer some suggestions to achieve continuous rotation P (Plan) - D (Do) - C (Check) - (Action). It is a benign improving cycle that effectively improves the research interaction and enhances the products. In this study, acrylic ester is used for the medium, from series of planning, acquisition of the ester through basic reaction, to the analysis test assessment in the laboratory, and further improvement. In this way, we complete a good research cycle. In addition to the preliminary effectiveness, we also provide a good template.
The test results of powder-polymer mortar showed that the powder-polymer mixed with the accelerator had a 30-60 minute retarding effect, which could increase the flowability of modified mortar, especially for a long time (90 ~120 minutes) with the increasing flowability of 5 to 10%; in part experimental conditions, the polymer modified cement mortar had increasing effects on Flexural and compressive strength; the water-absorptivity and the water-absorbing expansion rate also effectively reduced. Besides, it was found, with different types and dosages of the superplasticizers which were mixed to control the equally initial fluidity, the powder- polymer would affect the effectiveness of the cement mortar.
From the esterification of acrylic acid and three different kinds of alcohols,ethanol, ethylene glycol and diethylene glycol, we got Poly Acrylic Ester (PAE). Through the powdered characteristics and the screening process of fresh mixed and hardened paste, the test results showed that glycol acrylate powdered polymer mixed with the accelerator had a 30-60 minute retarding effect, which could increase the flowability of fresh mixed mortar, especially for a long time (90 ~120 minutes) with the increasing flowability of 5 ~10%; the water-absorptivity and the water-absorbing expansion rate also effectively reduced. But it was not so good in strength, showing that the powdered polymer had certain restrictions when it was applied.
From the esterification of acrylic acid and five different kinds of alcohols,ethanol,ethylene glycol,diethylene glycol,lauryl alcohol and stearyl alcohol, we got Poly Acrylic Ester polymer in liquid. Compressive assessment test results showed that at the acid-alcohol mole ratio of 0.2, glycol acrylate polymer had the most effective modification,and the hardened properties were the best with the additive of 0.1%. Compared with the control group,after modification,the 28-day compressive strength of the modified cement paste,mortar and concret improved separately by 12.7%, 8.6% and 9.9%; the 28-day flexural strength and adhensive strength of the modified mortar improved separately by 10.0% and 73.9%;besides,the flowability of the modified mortar effectively increased by 9.8%, and 10.8% less water absorption; the dry shrinkages of different ages (length change) effectively decreased by 7.1%-14.5%, and the perventage of final weight loss of the soundness test decreased by 23.4%. In addition,in the supersonic velocity test, the velocity of the modified mortar improved by 6.9%, the dynamic elastic modulus by 33.3%, and in the rapid chloride ion penetration test (RCPT), 6-hour cumulative passing electricity of the 56-day-age specimen decreased by 19.8%, showing its promotion of durability and compactness. The SEM observation also confirmed that the PAE’s membrane formed in the modified cement matrix.
Purified by the three alcohols,ethanol,ethylene glycol and diethylene glycol,and through acid-alcohol ratio,temperature,time,catalyst and other parameters,we probed into the optimized study of purification. The comprehensive test results showed that we could get the best modified Glycol Acrylate and Diethylate glycol Acrylate with higher reaction temperature (90 ℃), moderate reaction time (60 minutes) and the right amount of concentration of catalyst (1% of the total weight of acid and alcohol). The best esterification rate is respectively 17.87% (at the ethylene glycol mole ratio of 0.271) and 19.66% (at the diethylene glycol mole ratio of 0.291 ). We got the best purification by adding 1.0% dose of hydrogen peroxide and Diethylate glycol Acrylate polymer had the most remarkable effect of modification by the additive of 0.1%. Compared with the control group,after modification,the 28-day compressive strength of the modified cement paste,mortar and concret improved separately by 14.8%, 15.1% and 14.1%; the 28-day flexural strength and adhensive strength of the modified mortar improved separately by 12.1% and 116.7%.Besides,the flowability of the modified mortar effectively increased by 6.3% less water absorption; the dry shrinkages of different ages (length change) effectively decreased by 36.2%~52.7%, and the perventage of final weight loss of the soundness test decreased by 15.4%. In addition,in the supersonic velocity test, the velocity of the modified mortar improved by 0.2%~5.9%, the dynamic elastic modulus by 33.3%, and in the rapid chloride ion penetration test (RCPT), 6-hour cumulative passing electricity of the 28-day-age specimen decreased by 2.82%, showing its promotion of durability and compactness. In the concrete fire damage kiln simulation experiments,the strength reduction of the specimen improved by 39.3%, also confirming that it could prolong the concrete resistant strength under high temperature.
Ultimately, the performance-cost assement results show that the optimized liquid polymer modified cement mortar, its performance-cost value is higher than that of ordinary Portland cement mortar, the highest or even up to 3 times.
|
參考文獻 |
1. Fowler, D.W., “Polymer in concrete:a vision for the 21st century,” Cement and Concrete Composites, Vol 21, No. 5, pp. 449-452 (1999).
2. Ohama, Y., “Recent progress in concrete-polymer composites,” Advn Cem Bas Mat., Vol. 5, pp. 31-40 (1997).
3. Ohama, Y., “Polymer-based admixyures,” Cement and Concrete Composites, Vol. 20, NO. 2, pp. 189-212 (1998).
4. The Dow Chemical Company, http://www.dow.com/ .
5. 徐武軍,「高分子材料導論」,台北五南圖書出版(股)公司 (2004)。
6. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars,” Cement and Concrete Research, Vol. 33, No. 11, pp. 1715-1721 (2003).
7. Schulze, J., and Killermann, O., “Long-term performance of redispersible powders in mortars,” Cement and Concrete Research, Vol. 31, No. 3, pp. 357-362 (2001).
8. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere,” Cement and Concrete Research, Vol. 31, No. 11, pp. 1643-1645 (2001).
9. Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., and Ibrahim, M., “Mechanical properties and durability characteristics of polymer- and cement-based repair materials,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 527-537 (2003).
10. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Hydrogarent-type cubic crystals in polymer-modified martars,” Cement and Concrete Research, Vol. 27, No.12, pp. 1787-1789 (1997).
11. Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on portland cement hydration,” Cement and Concrete Research, Vol. 17, No. 6, pp. 875-890 (1987).
12. Sakai, E., and Sugita, J., “Composite mechanism of polymer modified cement,” Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135 (1995).
13. Mindess, S., Young, J. F., and Darwin, D., Concrete. 2nd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 583-598 (2002).
14. Fu, X., and Chung, D. L., “Submicron carbon filament cement-matrix composites for electromagnetic interference shielding,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1467-1472 (1996).
15. Fichet, R. O., Gauthier, C., Clamen, G., and Boch, P., “Microstructural aspects in a polymer-modified cement” , Cement and Concrete Research, Vol. 28, No. 12, pp. 1687-1693 (1998).
16. D.A. Silva, V.M. John, J.L.D. Ribeiro, H.R. Roman,” Pore size distribution of hydrated cement pastes modified with polymers”, Cement and Concrete Research 31 , pp. 1174-1184 (2001).
17. Rha, C. Y., Kim, C. E., Lee, C. S., Kim, K. I., and Lee, S. K., “Preparation and characterization of absorbent polymer-cement composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 231-236 (1999).
18. Silva, D. A., and Monteiro, P. J. M., “The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy,” Cement and Concrete Research, Vol. 36, No. 8, pp. 1501-1507 (2006).
19. Silva, D. A., John, V. M., Ribeiro, J. L. D., and Roman, H. R., “Pore size distribution of hydrated cement pastes modified with polymers,” Cement and Concrete Research, Vol. 31, No. 8, pp. 1177-1184 (2001).
20. Kim, J. H., and Robertson, R. E., “Prevention of air void formation in polymer-modified cement mortar by pre-wetting,” Cement and Concrete Research, Vol. 27, No. 2, pp. 171-176 (1997).
21. Gorninski, J. P., Molin, D. C., and Kazmierczak, C. S., “Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete,” Cement and Concrete Research, Vol. 34, No. 11, pp. 2191-2195 (2004).
22. Jenni, A., Holzer, L., Zurbriggen, R., and Herwegh, M., “Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars,” Cement and Concrete Research, Vol. 35, No. 1, pp. 35-50 (2005).
23. Beeldens, A., Monteny, K., Vincke, E., Belie, N. D., Gemert, D. V., Taerwe, L., and Verstraete, W., “Resistance to biogenic sulphuric acid corrosion of polymer-modified mortars,” Cement and Concrete Composites, Vol. 23, No. 1, pp. 47-56 (2001).
24. Martinez-Ramirez, S., Zamarad, A., Thompsonb, G. E., and Moore, B., “Organic and inorganic concrete under SO2 pollutant exposure,” Cement and Concrete Research, Vol. 37, No. 10, pp. 933-937 (2002).
25. Vincke, E., Wanseele, E. V., Monteny, J., Beeldens, A., Belie, N. D., Taerwe, L., Gemert, D. V., and Verstraete, W., “Influence of polymer addition on biogenic sulfuric acid attack of concrete,” International Biodeterioration & Biodegradation, Vol. 49, pp. 283 - 292 (2002).
26. Monteny, J., Belie, N., Vincke, E., Verstraete, W., and Taerwe, L., “Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete,” Cement and Concrete Research, Vol. 31, No. 9, pp. 1359-1365 (2001).
27. 馬齊文,「粉體組成對活性粉混凝土微巨觀力學性質之影響與高分子改質之效益」,國立台灣大學土木工程學研究所博士論文 (2005)。
28. Rodrigues, F. A., and Joekes, I., “Macro-defect free cements- a new approach,” Cement and Concrete Research, Vol. 28, No. 6, pp. 877-885 (1998)..
29. Santos, R. S., Rodrigues, F. A., Segre, N., and Joekes, I., “Macro-defect free cements Influence of poly(vinyl alcohol), cement type, and silica fume,” Cement and Concrete Research, Vol. 29, No. 5, pp. 747–751 (1999).
30. Schulze, J., “Influence of water-cement ratio and cement content on the properties of polymer-modified mortars,” Cement and Concrete Research, Vol. 29, No. 6, pp. 909-915 (1999).
31. Drabik, M., Mojumdar, S. C., and Galikova, L., “Change of thermal events of macro defect-free (MDF) cements due to the deterioration in the moist atmosphere,” Cement and Concrete Research, Vol. 31, No. 5, pp. 743-747 (2001).
32. Walters, D. G., “Comparison of latex-modified portland cement mortars,” ACI Materials Journal, Vol. 87, No. 4, pp. 371-377 (1990).
33. Gao, J. M., Qian, C. X., Wang, B., and Morino, K., “Experimental Study on Properties of Polymer-Modified Cement Mortars with Silica Fume,” Cement and Concrete Research, Vol. 32, No. 1, pp. 41-45 (2002).
34. 林世堂,「摻料對水泥基複合材料早期收縮開裂敏感性之探討」,國立海洋大學材料工程研究所博士論文 (1999)。
35. Ole Mejlhede Jensen, Per Freiesleben Hansen,“Water-entrained cement-based materials I. Principles and theoretical background”, Cement and Concrete Research 31 647-654(2001).
36. 郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學研究所博士論文 (2000)。
37. Kantro, D. L., “Influence of water-Reducing admixtures on properties of cement paste - a miniature slump test,” Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-108 (1980).
38. 黃國祥,「羧酸強塑劑於水泥砂漿中最佳劑量之研究」,國立屏東科技大學土木工程系碩士論文 (2003)。
39. Hall, C.,”Water movement in porous building materials - IV. the. initial surface absorption and the sorptivity.” Building and Enviornment, 16(3), 201-207(1981).
40. Hall, C.” Water sorptivity of mortars and concrete: a review.” Magazine of Concrete Research, 41(147), 51-61(1989).
41. 冯乃谦,「高性能混凝土结构」,北京机械工业出版社(2004)。
42. 陆金平译,「聚合物混凝土的现状」,国外建筑与城乡建设(1989)(1).
43. 沈春林,「聚合物水泥防水涂料」,北京化学工业出版社(2003)。
44. 肖力光译,「聚合物混凝土在世界范围的应用」(1990)。
45. 忻秀卿,「聚合物混凝土复合材料的技术进展」,新型建筑材料(1995)(2)。
46. 肖力光译,「使用重新分散聚合物粉末的聚合物—改性砂浆的性能」,国外建筑与城乡建设,(1995)(2)。
47. 傅德海 赵四渝 徐洛屹,「干粉砂浆应用指南」,中国建材工业出版社(2006)。
48. 周世藻,陈世源,「未来混凝土的发展方向—聚合物混凝土」,硅酸盐学报,1994(4).
49. Hwai-chung wu, Yun Mook Lim, V. C. Li., “Application of Recycled Tire Cord in Concrete for Shrinkage Crack Control. ”Jornal of Materials Science Letters(1996).
50. Arun Pratap, ”Vinyl ester and Acrylic based Polymer concrete for electrical applications”(2002).
51. E.P.普罗德曼,「聚合物基体复合材料中的界面」,北京中国建筑工业出版社(1979)。
|