博碩士論文 983202089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.225.234.89
姓名 陳殷捷(Yin-jie Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 結合最適控制與養護門檻策略之運輸設施生命週期管理
(Transportation Life-cycle Management using Optimal Control and Threshold-based Maintenance)
相關論文
★ 緊急疏散指示系統之設計與評估★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究★ 交通改善計畫對區域交通汙染排放之影響-以臺鐵桃園段高架化為例
★ 合作與競爭賽局策略下之行人模擬★ 動態混合模式架構下之運輸設施生命週期管理求解方法研究
★ 應用相關均衡賽局與時空網路於行人模擬之研究★ 供應鏈策略應用於營建產業之研究
★ 道路防災保護決策最佳化之研究★ 運輸設施生命週期管理維護策略訂定之研究
★ 臺鐵桃園段高架化建設計畫對區域交通汙染排放影響之探討★ 考量避開擁塞行為之細胞自動機行人模擬模式
★ 動態緊急疏散指示系統之設計與評估★ 市區公車路線調整最佳化模式
★ 市區公車路線及排程最佳化模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 運輸設施(如:鋪面與橋梁)的維護,對於行車品質與安全而言都是一個重要的課題,因此為了要科學化分析鋪面狀態的維修與養護,鋪面生命週期的最適控制是最新趨勢,然而傳統的施工流程往往與鋪面狀態的最佳化分析相互衝突,其中有三個明顯的限制,第一:工程單位通常採用人工量測以及維修門檻作為維修策略維修,使得最佳化之維修方案常常難以被接受,導致最佳化模式產生的策略與實際養護單位工作流程造成不相容的情形;第二:通常最佳化數學模式不易考量不同的劣化模式,不同的劣化趨勢維修效果,卻都用相同的模式進行分析,這會導致決策上的錯誤,造成生命財產的損失;第三:設施與設施之間的關聯性往往缺乏考量,因此設施之間車流的轉換往往被忽略,造成更多預測的誤差。
因此本研究採用了動態混合模式,以解決上述的三項缺失,首先針對動態混合模式
之各個系統進行介紹,之後再將邏輯運算式轉換成數學限制式,接著加入交通指派,以建構一雙層問題。由於整個探討分析的問題無法直接求解且規模過大,因此利用啟發式解法中的禁忌搜尋演算法將問題分層考慮,並且將問題依據時間切割以加速求解。最後,使用實例分析不同成本下對於目標鋪面的最佳維修門檻,並比較分析不同成本下的最佳門檻,來測試本研究提出之方法。
本研究綜合最適控制與最佳養護門檻策略,為鋪面維護提供有效的決策方法,使得
在生命週期成本能達到最小化,並且可以應用同樣的方法於交通運輸設施,以幫助施工人員在養護設施時進行合理的決策與評估。
摘要(英) Transportation infrastructure management deals with maintenance decision-making of
transportation facilities such as pavements and bridges. Various methodologies have been
adopted to determine the optimal allocation of limited funds over multiple-periods. Optimal
control is the state-of-the-art methodology for maintenance decision-making. However, the
methodology has three major limitations. First, most of the models adopting optimal control
generate highly detailed plans that contain maintenance policy for every facility at every time
period. These plans are not well-accepted by transportation agencies because they are
incompatible with their workflows for pavement management, i.e., threshold-based
maintenance. Second, these models are difficult to solve so simple deterioration and
maintenance effectiveness models are generally assumed. Third, the interdependencies
between facilities are often ignored.
Therefore, to address the above limitations, this paper formulates the problem as a
dynamic hybrid model to find the optimal thresholds considering available budgets. Dynamic
hybrid systems are easy to formulate with logical statements but logical statements are
difficult to optimize. The conversion between the logical statements and mathematical
programming is thus discussed. The user equilibrium for traffic flow is also introduced in the
problem to consider facility interdependency. As a result, a bi-level programming problem has
to be formulated. The problem is solved with Tabu search algorithm. Further, the technique of
decomposition is used to speed up the solution process. Finally, to test the methodology, a
numerical example is conducted to find the optimal thresholds under different budgets.
關鍵字(中) ★ 鋪面維修
★ 生命週期管理
★ 動態混合模式
★ 最佳化
★ 交通量指派
★ 維修門檻
關鍵字(英) ★ life-cycle management
★ optimization
★ traffic assignment
★ dynamic hybrid models
★ pavement maintenance
★ maintenance threshold
論文目次 摘要............................................................................................................................................i
ABSTRACT ...............................................................................................................................ii
目錄..........................................................................................................................................iii
圖目錄.......................................................................................................................................v
表目錄.....................................................................................................................................vii
誌謝........................................................................................................................................viii
第一章 緒論........................................................................................................................1
1.1 研究背景........................................................................................................................1
1.2 研究動機與目的............................................................................................................2
第二章 文獻回顧................................................................................................................4
2.1 運輸設施生命週期管理之最適控制............................................................................4
2.2 動態混合系統................................................................................................................8
2.3 網路層次的維修策略....................................................................................................9
2.4 常用鋪面評估指標......................................................................................................10
2.4.1 國際糙度指標(International Roughness Index,IRI) .....................................12
2.5 禁忌搜尋法(Tabu search algorithm)............................................................................16
第三章 研究方法..............................................................................................................19
3.1 動態混合系統之建構..................................................................................................20
3.1.1 切換系統( SS,Switched System ) ...............................................................20
3.1.2 事件產生器( EG,Event Generater ) ............................................................22
3.1.3 有限狀態機( FSM,Finite State Machine ) ..................................................23
3.1.4 模式選擇器( MS,Mode Selector ) ..............................................................24
3.2 轉換動態混合系統成為數學規劃問題......................................................................25
3.2.1 門檻值引發事件..............................................................................................26
3.2.2 IF – THEN – ELSE ..........................................................................................27
3.2.3 IF AND ONLY IF.............................................................................................28
第四章 模式建構與求解方法..........................................................................................30
4.1 維修模式訂定..............................................................................................................30
4.1.1 事件產生器( EG,Event Generator )............................................................32
4.1.2 有限狀態機( FSM,Finite State Machine ) ..................................................38
4.1.3 模式選擇器( MS,Mode Selector ) ..............................................................39
4.1.4 切換系統( SS,Switched System ) ...............................................................41
4.2 交通量指派—使用者均衡..........................................................................................43
4.3 數學規劃模式建構......................................................................................................45
第五章 範例測試與分析討論..........................................................................................55
5.1 實例測試環境..............................................................................................................55
5.2 不同維護成本運算剖析..............................................................................................55
5.3 糙度變化分析..............................................................................................................60
第六章 結論與建議..........................................................................................................64
6.1 結論..............................................................................................................................64
6.2 建議與貢獻..................................................................................................................65
參考文獻.................................................................................................................................66
參考文獻 1. Bemporad, A. and M. Moran (1999). Control of systems integrating logic, dynamics,
and constraints. Automatica 35, 407–428.
2. Ben-Akiva, M., F. Humplick, S. Madanat, and R. Ramaswamy (1991). Infrastructure
Management under Uncertainty: The Latent Performance Approach. Cambridge, MA,
USA: Department of Civil Engineering, Massachusetts Institute of Technology.
3. Ben-Akiva, M., F. Humplick, S. Madanat, and R. Ramaswamy (1993). Infrastructure
management under uncertainty: Latent performance approach. Journal of Transportation
Engineering 119(1), 43–58.
4. Black, M., A. T. Brint, and J. R. Brailsford (2005). Comparing probabilistic methods for
the asset management of distributed items. Journal of Infrastructure Systems 11(3).
5. Branicky, M. (1998). Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on automatic control 43(4), 475–482.
69
6. Bujorianu, M. and J. Lygeros (2004). General stochastic hybrid systems. In IEEE
Mediterranean Conference on Control and Automation MED, Volume 4.
7. Carnahan, J. V., W. J. Davis, M. Y. Shahin, P. L. Keane, and M. I. Wu (1987). Optimal
maintenance decisions for pavement management. Journal of Transportation
Engineering 113(5).
8. Chandra, S. (2004). Effect of road roughness on capacity of two-lane roads. Journal of
transportation engineering 130.
9. Chu, C.-Y. and P. L. Durango-Cohen (2007). Estimation of infrastructure performance
models using state-space specifications of time series models. Transportation Research
Part C 15(1), 17–32.
10. Chu, C.-Y. and P. L. Durango-Cohen (2008a). Estimation of dynamic performance
models for transportation infrastructure using panel data. Transportation Research Part
B 42(1), 57–81.
11. Chu, C.-Y. and P. L. Durango-Cohen (2008b). Incorporating maintenance effectiveness
70
in the estimation of dynamic infrastructure performance models. Computer-Aided Civil
and Infrastructure Engineering 23(3), 174–188.
12. Daya, M.B., and Fawzan, M. A. (1998). A tabu search approach for the flow shop
scheduling problem, European Journal of Operational Research, 109, pp.88-95,1998.
13. Durango-Cohen, P. and P. Sarutipand (2009). Maintenance optimization for
transportation systems with demand responsiveness. Transportation Research Part C:
Emerging Technologies 17(4), 337–348.
14. Durango-Cohen, P. L. (2007). A time series analysis framework for transportation
infrastructure management. Transportation Research Part B 41(5), 493–505.
15. Durango-Cohen, P. L. and P. Sarutipand (2007). Capturing interdependencies and
heterogeneity in the management of multifacility transportation infrastructure systems.
Journal of Infrastructure Systems 13(2).
16. Glover, F (1997). Tabu search, Kluwer Academic Publisher, Boston.
71
17. Jido, M., T. Otazawa, and K. Kobayashi (2008). Optimal repair and inspection rules
under uncertainty. Journal of Infrastructure Systems 14(2), 150–158.
18. Jorge Alberto Prozzi (2001).Modeling pavement performance by combining field and
experimental data. Transportation Research Record 1699, Transportation Research
Board, National Research Council, Washington, D.C., pp. 87-94.
19. Labi, S. and K. C. Sinha (2003). Measures of short-term effectiveness of highway
pavement maintenance. Journal of Transportation Engineering 129(6), 673–683.
20. Leblanc, L. J. (1975). An Algorithm for the Discrete Network Design Problem.
Transportation Science 9, pp. 183–199.
21. Madanat, S. and M. Ben-Akiva (1994). Optimal inspection and repair policies for
infrastructure facilities. Transportation Science 28(1), 55–62.
22. Markow, M. J. (1990). Life-cycle cost evaluation of the effects of pavement maintenance.
Transportation Research Record 1276, 37–47.
72
23. Mbwana, J. R. and M. A. Turnquist (1996). Optimization modeling for enhanced
network-level pavement management system. Transportation Research Record 1524,
76–85.
24. Mishalani, R. G. and S. M. Madanat (2002). Computation of infrastructure transition
probabilities using stochastic duration models. Journal of Infrastructure Systems 8(4),
139–141.
25. N.D. Lea International Ltd (1995). Modelling Road Deterioration and Maintenance
Effects In HDM-4. RETA 5549-REG Highway Development and Management Research
Final Report.
26. Ng, M., D. Lin, and S. Waller (2009). Optimal Long-Term Infrastructure Maintenance
Planning Accounting for Traffic Dynamics. Computer-Aided Civil and Infrastructure
Engineering 24(7), 459–469.
27. Ouyang, Y. (2007). Pavement resurfacing planning for highway networks: parametric
policy iteration approach. Journal of Infrastructure Systems 13, 65.
73
28. Ouyang, Y. and S. Madanat (2006). An analytical solution for the finite-horizon
pavement resurfacing planning problem. Transportation Research Part B 40(9), 767–
778.
29. American Association of State Highway and Transportation Officials (1993). AASHTO
Guide for Design of Pavement Structures 1993. American Association of State Highway
and Transportation Officials, Washington, DC.
30. Ricardo, O.D.S., Silvrano D.N., and Marcio M. D. F.(2003). Improving Pavement With
Long-Term Pavement Performance:Products for Today and Tomorrow. U.S. Department
of Transportation, publication NO. HRT-06-109
31. Sayers, M. W. and Karamihas, S. M. (1998).The Little Book of Profiling-Base
Information about Measuring and Interpreting Road Profiles, University of Michigan,
Ann Arbor.
32. Sayers, M. W., Thomas, D. G., and Cesar A. V. (1986), The International Road
Roughness Experiment about Establishing Correlation and a Calibration Standard for
Measurements, World Bank Technical Paper No.45.
74
33. Smilowitz, K. and S. Madanat (2000). Optimal inspection, maintenance and
rehabilitation policies for networks of infrastructure facilities under measurement and
forecasting uncertainty. Journal of Computer-Aided Civil and Infrastructure Engineering
15(1).
34. Task Force on Pavements and the AASHTO (2001). Pavement Management Guide.
Washington, DC, USA: American Association of State Highway and Transportation
Officials.
35. Torrisi, F. and A. Bemporad (2004). HYSDEL-a tool for generating computational
hybrid models for analysis and synthesis problems. IEEE Transactions on Control
Systems Technology 12(2), 235–249.
36. Paterson W. D. O. and Attoh-okine B. (1992).Summary Models of Paved Road
Deterioration Based on HDM-III. Transportation Research Record 1344,99 – 105.
37. Zhang, H., G. Keoleian, M. Lepech, and A. Kendall (2010). Life Cycle Optimization of
Pavement Overlay Systems. Journal of Infrastructure Systems 310 –322.
75
38. 鼎漢國際工程顧問股份有限公司,民95,桃園都會區整理運輸系統分析及需求模式
之建立與應用期末報告書。
指導教授 朱致遠(Chih-yuan Chu) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明