博碩士論文 993202024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.133.133.150
姓名 陳宥廷(Yu-ting Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁動態荷重識別理論與試驗
(Moving Force Identification Theory and Experiment for Beam and Bridge)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於超載的車輛對道路橋梁等設施危害極大,有效的車輛荷重辨識系統是非常重要的。而一般傳統的靜態地磅站受限於地形與交通的影響,因而延伸出動態地磅(Weight in Motion, WIM)的概念。雖然此研究發展至今已有五十年之久,但目前這類產品在荷重的識別上並不精確,導致此類系統僅能初步篩選出可能超載之車輛。本研究採用Law, S. S. 所提出的時間域識別法(TDM)作為基本理論,藉由ANSYS 軟體數值模擬與實驗室試驗,對此理論方法在推導過程中數學模型假設的合理性以及其使用上的限制做逐步探討。另外,對利用撓度與彎矩兩種反應的識別效果做比較。最後,結合橋梁結構各大梁與荷重間存在反應識別分配係數的概念,有效簡化複合結構,順利對二維結構進行荷重的識別。此理論優點在於無須建立軸重識別資料庫以及具有力學理論作為基礎,將會是一套具有實際運用與發展空間的動態識別理論。
摘要(英) Since overloading vehicles result in great damage to roads and bridges, it is important to have an effective force identification system. In general, the traditional weighbridge station in static state is confined due to the influence of terrain and traffic; therefore, it extends a concept of Weight in Motion (WIM). Although the development
of this research has been fifty years, the moving force identification on products is not accurate. Instead, the system can only initially screen the vehicles which are likely to be overloaded. Hence, this study adopts Time Domain Method (TDM), proposed by Law, S. S., to be the basic theory. Through the numerical simulation and laboratorial testing, this study discusses the rationality of theoretical math model and the restrictions of using. In addition, it c ompares the results of identification between deflection and bending moment reactions. Finally, combine the structures of bridges and the concept of response identification distribution coefficient. By this, it simplifies the complex structures and makes it possible to identify the force of two-dimensional structure. The advantage of this theory is that it doesn’t need to create axle load identification databases; moreover, it is also based on the mechanical theory. Therefore, this theory will become practical and potential in the field of moving force identification.
關鍵字(中) ★ 反應識別分配係數
★ 荷重識別
★ 動態地磅
★ 時間域識別法
關鍵字(英) ★ Response Identification Distribution Coefficient
★ Moving Force Identification
★ Time Domain Method (TDM)
★ Weight in Motion (WIM)
論文目次 摘要 ................................................................................................................................ I
Abstract ......................................................................................................................... II
誌謝 .............................................................................................................................. III
目錄 .............................................................................................................................. IV
圖目錄 ........................................................................................................................ VII
表目錄 ........................................................................................................................... X
第一章 緒論 .................................................................................................................. 1
1.1. 研究動機與目的 ........................................................................................... 1
1.2. 論文架構 ....................................................................................................... 2
第二章 文獻回顧 .......................................................................................................... 4
第三章 理論方法 .......................................................................................................... 9
3.1. 時間域識別法 ............................................................................................... 9
3.2. 基礎分析模型 ............................................................................................... 9
3.2.1. 單一荷重識別 ...................................................................................... 13
3.2.2. 多荷重識別 .......................................................................................... 14
3.3. 外力型式討論 ............................................................................................. 15
3.4. 移動速度討論 ............................................................................................. 22
3.5. 二維橋梁結構識別 ..................................................................................... 25
3.5.1. 反應識別分配係數之假設 .................................................................. 25
3.5.2. 二維結構荷重識別流程 ...................................................................... 28
3.6. 誤差計算 ..................................................................................................... 29
3.7. 小結 ............................................................................................................. 29
第四章 數值模擬與分析 ............................................................................................ 31
4.1. 一維梁構件模擬 ......................................................................................... 31
4.1.1. 梁構件數值分析模型 .......................................................................... 31
4.1.2. 模態分析 .............................................................................................. 34
4.1.3. 單軸荷重識別 ...................................................................................... 39
4.2. 二維橋梁結構模擬 ..................................................................................... 50
4.2.1. 橋梁結構數值分析模型 ...................................................................... 50
4.2.2. 荷重識別 .............................................................................................. 55
4.2.2.1. 等效彎曲剛度 .......................................................................... 55
4.2.2.2. 反應識別分配係數 .................................................................. 58
4.2.2.3. 案例驗證 .................................................................................. 59
第五章 實驗室試驗 .................................................................................................... 61
5.1. 實驗室試驗試體與儀器設備 ..................................................................... 61
5.2. 量測取樣率設定 ......................................................................................... 67
5.3. 自然振動頻率量測 ..................................................................................... 67
5.4. 彎曲剛度識別 ............................................................................................. 69
5.5. 構件阻尼比識別 ......................................................................................... 70
5.6. 單軸荷重識別 ............................................................................................. 72
5.6.1. 彎矩反應識別結果 .............................................................................. 75
5.6.2. 撓度反應識別結果 .............................................................................. 83
5.7. 小結 ............................................................................................................. 86
第六章 結論與建議 .................................................................................................... 87
6.1. 結論 ............................................................................................................. 87
6.2. 展望 ............................................................................................................. 88
參考文獻 ...................................................................................................................... 90
附錄A .......................................................................................................................... 93
附錄B .......................................................................................................................... 96
附錄C ........................................................................................................................ 102
附錄D ........................................................................................................................ 105
附錄E ........................................................................................................................ 111
附錄F ........................................................................................................................ 116
參考文獻 [1] Uhl, T., “The Inverse Identification Problem and Its Technical Application,”
Archive of Applied Mechanics, Vol. 77, pp.325-337 (2007).
[2] O'Connor, C. and Chan, T. H. T., “ Dynamic Wheel Loads from Bridge Strains,”
Structural Engineering American Society of Civil Engineers, Vol. 114,
pp.1703-1723 (1988).
[3] Law, S. S. and Chan, T. H. T., “Moving Force Identification: A Time Domain
Method,” Journal of Sound and Vibration, Vol. 201, No.1, pp.1-22 (1997).
[4] Law, S. S. and Chan, T. H. T., “Moving Force Identification: A Frequency and
Time Domains Analysis,” Journal of Dynamic Systems, Measurement and
Control American Society of Mechanical Engineers, Vol. 121, pp.394-401 (1999).
[5] Zhu, X. Q. and Law, S. S., “Identification of Vehicle Axle Loads from Bridge
Dynamic Responses,” Journal of Sound and Vibration, Vol. 236, No.4,
pp.705-724 (2000).
[6] Zhu, X. Q. and Law, S. S., “Time Domain Identification of Moving Loads on
Bridge Deck,” Journal of Vibration and Acoustics, Vol. 125, pp.187-198 (2003).
[7] Chan, T. H. T., Yu, L. and Law, S. S., “Moving Force Identification Studies I:
Theory,” Journal of Sound and Vibration, Vol. 247, No.1, pp.59-76 (2001).
[8] Chan, T. H. T. , Yu, L. and Law, S. S., “Moving Force Identification Studies II:
Comparative Studies,” Journal of Sound and Vibration, Vol. 247, No.1, pp.77-95
(2001).
[9] Zhu, X. Q. and Law, S. S., “Orthogonal Function in Moving Loads Identification
on A Multi-Span Bridge,” Journal of Sound and vibration, Vol. 245, No.2,
pp.329-345 (2001).
[10] Zhu, X. Q. and Law, S. S., “Identification of Moving Interaction Forces with
Incomplete Velocity Information,” Mechanical Systems and Signal Processing,
Vol. 17, No.6, pp.1349-1366 (2003).
[11] Law, S. S., Bu, J. Q., Zhu, X. Q. and Chan, S. L., “Vehicle Axle Loads
Identification Using Finite Element Method,” Engineering Structures, Vol. 26,
pp.1143-1153 (2004).
[12] Law, S. S. and Zhu, X. Q., “Bridge Dynamic Responses Due to Road Surface
Roughness and Braking of Vehicle,” Journal of Sound and Vibration, Vol. 282,
pp.805-830 (2005).
[13] Pinkaew, T., “Identification of Vehicle Axle Loads from Bridge Responses Using
Updated Static Component Technique,” Engineering Structures, Vol. 28,
pp.1599-1608 (2006).
[14] Asnachinda, P., Pinkaew, T. and Laman, J. A., “Multiple Vehicle Axle Load
Identification from Continuous Bridge Bending Moment Response,” Engineering
Structures, Vol. 30, pp.2800-2817 (2008).
[15] Gonzalez, A., Rowley, C. and Obrien, E. J., “A General Solution to the
Identification of Moving Vehicle Forces on A Bridge,” International Journal For
Numerical Methods In Engineering, Vol. 75, pp.335-354(2008).
[16] Trujillo, D. M., “Application of dynamic programming to the general inverse
problem,” International Journal for Numerical Methods in Engineering, Vol.12,
pp.613-624 (1977).
[17] Yu, L., Chan, T. H. T. and Zhu, J. H., “Moving Vehicle Load Identification from
Bridge Responses Based on Method of Moments (MOM),” Proceedings
International Conference on Heavy Vehicles Paris 2008 Incorporating Heavy
Vehicle Transport Technology (HVTT 10) and Weigh in Motion (ICWIM 5), pp. 297-310, Paris, France (2008).
[18] Wu, S. Q. and Law, S. S., “Moving force identification based on stochastic finite
element model,” Engineering Structures, Vol.32, pp.1016-1027 (2010).
[19] 交通部,「交通技術標準規範公路類公路工程部:公路橋梁設計規範」,臺
北,第37-41 頁 (2009) 。
[20] 「基隆市中正高架橋碳纖包覆補強載重試驗報告書」,國立中央大學橋梁研
究中心試驗報告,桃園 (2009) 。
[21] 胡海岩,機械振動基礎,北京航空航太大學出版社,北京,第177-182 頁
(2005) 。
[22] Fryba, L., Vibration of Solids and Structures Under Moving Loads, Institute of
Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic,
Prague, Czech Republic (1972).
指導教授 王仲宇(Chung-yue Wang) 審核日期 2011-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明