博碩士論文 963404005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.49.32
姓名 劉伊祐(Yi-Yu Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 均一粒徑高分子球之製備及其應用
(Preparation and Application of Monodisperse Polymer Spheres)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要利用無乳化劑乳化聚合法以及分散聚合法來分別製備出次微米級以及微米級之均一粒徑高分子球,並針對其粒徑大小的不同,來提出其相關應用之研究。首先第一主題為利用甲基丙烯酸甲酯(MMA)和甲基丙烯酸丁酯(BMA)之單體來進行無乳化劑乳化聚合法共聚合反應,並控制不同的BMA與MMA單體的重量比以及進料單體濃度等參數來製備出均ㄧ粒徑高分子次微米球,探討顆粒大小、均一度、玻璃轉移溫度、分子量等相關因素的影響。第二主題為將製備表面具有刷毛聚合物之均一粒徑高分子次微米球,首先利用無乳化劑乳化聚合法製備具耐有機溶劑(四氫呋喃)之高分子次微米球,在聚合反應轉化率到達70%時添加具有溴基的鏈轉移劑來得到表面具有原子轉移自由基聚合法(ATRP)之起始點,再進行ATRP接枝刷毛聚合物於高分子次微米球表面上。此研究將探討在不同組成下的交聯單體與反應單體所合成的次微米球對於有機溶劑的耐溶劑性,粒徑大小、和均一度等,以及應用在光子晶體上時,粒徑大小對於光子能隙的影響,並探討表面具有聚合物刷毛之高分子次微米球之光學性質。
第三主題為利用分散聚合法來製備均一粒徑微米級之聚甲基丙烯酸甲酯與聚苯乙烯球,並將其填充至液相層析之管柱內,探討不同粒徑大小以及具不同表面官能基之高分子球等對於類固醇藥物的分離效果。第四主題為製備螢光中空二氧化矽微米球,首先利用分散聚合法合成出高分子微米球後,然後進行Stöber方法將四乙氧基矽烷(TEOS)與3-胺丙基三乙氧基矽烷(APTES)加入反應,即可得到核(高分子)/殼(二氧化矽)結構的螢光複合微米球,再經由四氫呋喃溶劑將核(高分子)移除以及鍛燒程序後,即可得到具螢光性質的中空二氧化矽微米球。此研究將探討在不同微米級之粒徑下對於殼層結構的影響,以及應用在製備螢光材時,APTES的添加量與鍛燒溫度對於螢光性質的影響。
在成果上,本論文利用無乳化劑乳化聚合法成功的製備出具有不同玻璃轉移溫度、分枝結構、不同交聯程度、以及不同粒徑大小之均一粒徑次微米級高分子球,並且利用四溴化碳在聚合反應轉化率到達70%時加入,即可簡單的將ATRP的起始點(溴基)反應固定在次微米球的表面上,再進行ATRP接枝刷毛聚合物於高分子次微米球表面上。最後在將上述所製備出的不同粒徑次微米球排列成膠體晶體,即可得到全可見光波長下不同顏色的膠體晶體。在另一方面本論文利用分散聚合法成功的製備出不同粒徑大小之均一粒徑微米級高分子球,並發現利用PMMA球所填充的HPLC管柱對於類固醇藥物具有較好的分離效果。另外我們將不同粒徑大小之微米級高分子球作為模板並成功的利用Stöber方法將約30 nm左右的二氧化矽粒子構築在模板表面上,經由鍛燒將高分子球模板移除後,即可得到微米級之中空二氧化矽球。隨後我們將APTES加入到Stöber的方法裡,並發現濃度需高於1 mol%,鍛燒溫度需在300~500 °C之間,才可得到螢光中空二氧化矽微米球,而其螢光性質是來自於加入APTES所產生的氨基缺陷而導致發射的波長變寬至可見光範圍所產生的。
摘要(英) This study focuses on monodisperse submicron-scale and micron-scale polymer spheres prepared and their application. The four topics were discussed in this study. The first topic is preparation and characterization of monodisperse poly(n-butyl methacrylate-co-methyl methacrylate) submicron spheres via soap-free emulsion. The composition, particle size, glass transition temperature, molecular weight, and Mark–Houwink constant were proposed on the copolymer submicron spheres with various copolymer compositions and various monomer feed concentrations (M0).
In second topic, bromo-initiators for atom transfer radical polymerization (ATRP) were successfully immobilized on the surfaces of cross-linked poly(methyl methacrylate) (PMMA) spheres by soap-free emulsion polymerization using CBr4 as the chain transfer agent. Subsequent surface-initiated ATRP (SI-ATRP) afforded a layer of PMMA brushes covalently attached to the sphere surfaces. Colloidal crystal films of these monodisperse spheres were then studied to identify the relationship between variation in particle diameter and the optical properties.
In third topic, the monodisperse micron-scale polymer spheres were prepared by dispersion polymerization and packed column for aqueous chromatography. The different kind of polymer spheres and different particle size were discussed for separation of steroids.
In fourth topic, luminescence of hollow silica spheres was prepared by using micron-scale polymer spheres as template. The micron polymer spheres were mixed with tetraethyl orthosilicate (TEOS) and 3-Aminopropyltriethoxysilane (APTES) to obtain polymer core and silica shell composite via Stöber process. After rinsed with THF and calcination, the luminescence of hollow silica spheres can be obtained. The hollow silica layer was discussed by variation of particle diameter. In addition, the effect of various APTES concentrations and calcination temperatures were estimated for obtaining luminescence of material.
In results of the thesis, the monodisperse submicron-scale polymer spheres with different Tg values, branched structure, different cross-linking degrees, and different particle diameter were successfully prepared by soap-free emulsion polymerization. Subsequent facile preparation of surface-immobilized bromo-initiators was obtained using CBr4 as a chain transfer agent. These modified spheres could be employed for grafting polymer brushes through SI-ATRP, and will therefore find application in colloid crystals covering all of the visible regions could be controlled through the various particle diameters. On the other hand, monodisperse micron-scale polymer spheres were successfully prepared by dispersion polymerization. It was observed that the separation efficiency of micron-scale PMMA spheres were grater than PS spheres for steroids. In addition, Stöber process afforded a multilayer of ca. 30 nm silica nanoparticles attached to micron-scale polymer of templating. After calcination, the micron-scale hollow silica spheres were obtained. Furthermore, a combining photoluminescence property with entrapping APTES in the hollow silica sphere was carried out via Stöber process. The luminescence was appeared when APTES increase to 1 mol% and calcination temperature between 300 °C and 500 °C. The APTES-containing hollow silica spheres appeared luminescence because of the NH-related defect led to a broad emission of wavelength covering the visible regions.
關鍵字(中) ★ 中空螢光球
★ 均一粒徑
★ 高分子球
★ 光子晶體
★ 填充管柱
關鍵字(英) ★ luminescence of hollow spheres
★ polymer spheres
★ packed column
★ monodisperse spheres
★ photonic crystals
論文目次 ABSTRACT…I
ACKNOWLEDGEMENT…VII
TABLE OF CONTENTS…VIII
LIST OF TABLES…XII
LIST OF FIGURES…XIII
Chapter 1 Introduction…1
1.1 Background…1
1.1.1 Mechanism of Soap-Free Emulsion Polymerization…4
1.1.2 Mechanism of Dispersion Polymerization…4
1.2 Aims and Objectives…6
References…8
Chapter 2 Characterization of Monodisperse Copolymer Submicrospheres with Branched Structures and Different Glass-Transition Temperatures Prepared by Soap-Free Emulsion Polymerization…13
2.1 Introduction…14
2.2 Experimental…16
2.2.1 Materials…16
2.2.2 Polymerization Method…16
2.2.3 Measurements…17
2.3 Results and Discussion…19
2.3.1 Characterization of Submicrospheres…19
2.3.2 Effect of M0…21
2.4 Conclusions…24
References…25
Chapter 3 Facile Surface Immobilization of ATRP Initiators on Colloidal Polymers for Grafting Brushes and Application to Colloidal Crystals…39
3.1 Introduction…40
3.2 Experimental…42
3.2.1 Materials…42
3.2.2 Preparation of Monodisperse CPS…42
3.2.3 SI-ATRP Initiators on Colloidal Polymer…43
3.2.4 Grafting of Polymer Brushes…43
3.2.5 Construction of Colloidal Crystals…44
3.2.6 Measurements…44
3.3 Results and Discussion…47
3.3.1 Characterization of CPS…47
3.3.2 Polymer Brush Grafted Spheres…48
3.3.3 Optical Properties of Colloidal Crystals…49
3.4 Conclusions…51
References…52
Chapter 4 Preparation of Monodisperse Micron Polymer Spheres for Aqueous Chromatography…67
4.1 Introduction…68
4.2 Experimental…70
4.2.1 Materials…70
4.2.2 Polymerization Method…70
4.2.3 Measurements…71
4.3 Results and Discussion…73
4.3.1 Characterization of Polymer Spheres…73
4.3.2 Chromatographic Characterization of Steroids…74
4.4 Conclusions…75
References…76
Chapter 5 Architecture of Micron-Scale Hollow Spheres Composed of Silica Nanoparticles and Application in Luminescent Materials…83
5.1 Introduction…84
5.2 Experimental…86
5.2.1 Materials…86
5.2.2 Preparation of Micron Polystyrene Spheres(MPS)…86
5.2.3 Preparation of Hollow Silica Spheres…87
5.2.4 Method of Developing Luminescent Material…87
5.2.5 Measurements…88
5.3 Results and Discussion…90
5.3.1 Characterization of Spheres…90
5.3.2 Luminescent Property…92
5.4 Conclusions…93
References…95
Chapter 6 Conclusions…105
Publication List…106
Curriculum Vitae…109
參考文獻 Chapter 1:
1. Cui, L.; Zhang, Y.; Wang, J.; Ren, Y.; Song, Y.; Jiang, L. Macromol. Rapid Commun. 2009, 30, 589.
2. Gu, S.; Akama, H.; Nagao, D.; Kobayashi, Y.; Konno, M. Langmuir 2004, 20, 7948.
3. Nagao, D.; Sakamoto, T.; Konno, H.; Gu, S.; Konno, M. Langmuir 2006, 22, 10958.
4. Chen, X.; Cui, Z.; Chen, Z.; Zhang, K.; Lu, G.; Zhang, G.; Yang, B. Polymer 2002, 43, 4147.
5. Jin, L.; Liu, H.; Yang, W.; Wang, C.; Yu, K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 2948.
6. Muranaka, M.; Ono, T. Macromol. Rapid Commun. 2009, 30, 152.
7. Yu, Z.; Han, G.; Sun, S.; Jiang, X.; Chen, R.; Wang, F.; Wu, R.; Ye, M.; Zou, H. Anal. Chim. Acta 2009, 636, 34.
8. Yang, C.; Guan, Y.; Xing, J.; Shan, G.; Liu, H. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 203.
9. Lee, D.H.; Tokuno, Y.; Uchida, S.; Ozawa, M.; Ishizu, K. J. Colloid Interface Sci. 2009, 340, 27.
10. Ozin, G.A.; Yang, S.M. Adv. Funct. Mater. 2001, 11, 95.
11. Mihi, A.; Ocaña, M.; Míguez, H. Adv. Mater. 2006, 18, 2244.
12. Yang, C.H.; Lin, Y.S.; Huang, K.S.; Huang, Y.C.; Wang, E.C.; Jhong, J.Y.; Kuo, C.Y. Lab Chip 2009, 9, 140.
13. Guo, S.R.; Gong, J.Y.; Jiang, P.; Wu, M.; Lu, Y.; Yu, S.H. Adv. Funct. Mater. 2008, 18, 872.
14. Mizutani, A.; Nagase, K.; Kikuchic, A.; Kanazawa, H.; Akiyama, Y.; Kobayashi, Jun.; Annaka, M.; Okano, T. J. Chromatogr. A 2010, 1217, 522.
15. Matsumoto, T.; Ochi, A. Kobunshi Kagaku 1965, 22, 481.
16. Goodwin, J.W.; Hearn, J.; Ho, C.C.; Ottewill, R.H. Br. Polym. J. 1973, 5, 347.
17. Juang, M.S.D.; Krieger, I.M. J. Polym. Sci., Polym. Chem. Ed. 1976, 14, 2089.
18. Dziomkina, N.V.; Vancso, G.J. Soft Matter 2005, 1, 265.
19. Zhang, J.; Sun, Z.; Yang, B. Curr. Opin. Colloid Interface Sci. 2009, 14, 103.
20. Zhang, S.; Zhao, X. W.; Xu, H.; Zhu, R.; Gu, Z. Z. J. Colloid Interface Sci. 2007, 316, 168.
21. Barrett, K.E.J. Dispersion Polymerization in Organic Media; InterScience 1987, New York.
22. Kawaguchi, S.; Ito, K. Adv. Polym. Sci. 2005, 175, 299.
23. Cao, K.; Yu, J.; Li, B.G.; Li, B.F.; Pan, Z.R. Chem. Eng. J. 2000, 78, 211.
24. Lee, J.; Ha, J.U.; Choe, S., Lee, C.S.; Shim S.E. J. Colloid Interface Sci. 2006, 298, 663.
25. Hong, J.; Hong, C.K.; Shim, S.E. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 302, 225.
26. Kim, O.H.; Lee, K.; Kim, K.; Lee, B.H.; Choe, S. Colloid Polym. Sci. 2006, 284, 909.
27. Yamamoto, T.; Kanda, Y.; Higashitani, K. Langmuir 2004, 20, 4400.
28. Yamamoto, T.; Nakayama, M.; Kanda, Y.; Higashitani, K. J. Colloid Interface Sci. 2006, 297, 112.
29. Lok, K.; Ober, C.K. Can. J. Chem. 1985, 63, 209.
Chapter 2:
1. Ou, J.L.; Yang, J.K.; Chen, H. Eur. Polym. J. 2001, 37, 789.
2. Gu, S.; Akama, H.; Nagao, D.; Kobayashi, Y.; Konno, M. Langmuir 2004, 20, 7948.
3. Nagao, D.; Sakamoto, T.; Konno, H.; Gu, S.; Konno, M. Langmuir 2006, 22, 10958.
4. Zhang, S.; Zhao, X.W.; Xu, H.; Zhu, R.; Gu, Z.Z. J. Colloid Interf. Sci. 2007, 316, 168.
5. Gu, Z.Z.; Chen, H.; Zhang, S.; Sun, L.; Xie, Z.; Ge, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 302, 312.
6. Fox, T.G. Bull. Am. Phys. Soc. 1956, 1, 123.
7. Fang, S.J.; Fujimoto, K.; Kondo, S.; Shiraki, K.; Kawaguchi, H. Colloid Polym. Sci. 2000, 278, 864.
8. Babac, C.; Güven, G.; David, G.; Simionescu, B.C.; Piskin, E. Eur. Polym. J. 2004, 40, 1947.
9. Grunlan, J.C.; Ma, Y.; Grunlan, M.A.; Gerberich, W.W.; Francis, L.F. Polymer 2001, 42, 6913.
10. Hong, C.K.; Hwang, M.J.; Ryu, D.W.; Moon, H. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 331, 250.
11. Ye, Q.; Ge, X.; Zhang, Z. Radiat. Phys. Chem. 2003, 66, 11.
12. Zhang, M.G.; Weng, Z.X.; Huang, Z.M.; Pan, Z.R. Eur. Polym. J. 1998, 34, 1243.
13. Turner, S.R.; Voit, B.I.; Mourey, T.H. Macromolecules 1993, 26, 4617.
14. Suttiruengwong, S.; Rolker, J.; Smirnova, I.; Arlt, W.; Seiler, M.; Lüderitz, L.; Pérez de Diego, Y.; Jansens P.J. Pharm. Dev. Technol. 2006, 11, 55.
15. Tomita, Y.; Furushima, K.; Ochi, K.; Ishizu, K.; Tanaka, A.; Ozawa, M.; Hidaka, M.; Chikama K. Appl. Phys. Lett. 2006, 88, 071103.
Chapter 3:
1. Wong, S.; Kitaev, V.; Ozin, G.A. J. Am. Chem. Soc. 2003, 125, 15589.
2. Lin, Y.S.; Hung, Y.; Lin, H.Y.; Tseng, Y.H.; Chen, Y.F.; Mou, C.Y. Adv. Mater. 2007, 19, 577.
3. Zhang, J.; Sun, Z.; Yang, B. Curr. Opin. Colloid Interface Sci. 2009, 14, 103.
4. Song, J.H.; Kretzschmar, I. Langmuir 2008, 24, 10616.
5. Paquet, C.; Yoshino, F.; Levina, L.;Gourevich, I.; Sargent, E.H.; Kumacheva, E. Adv. Funct. Mater. 2006, 16, 1892.
6. Zhou, Z.; Zhu, S.; Zhang, D.J. Mater. Chem. 2007, 17, 2428.
7. Tsyalkovsky, V.; Klep, V.; Ramaratnam, K.; Lupitskyy, R.; Minko, S.; Luzinov, I. Chem. Mater. 2008, 20, 317.
8. Lee, D.H.; Tokuno, Y.; Uchida, S.; Ozawa, M.; Ishizu, K. J. Colloid Interface Sci. 2009, 340, 27.
9. Roohi, F.; Fatoglu, Y.; Titirici, M.M. Anal. Methods 2009, 1, 52.
10. Zou, Y.; Kizhakkedathu, J.N.; Brooks, D.E. Macromolecules 2009, 42, 3258.
11. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Langmuir 2007, 23, 9409.
12. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Annaka, M.; Kanazawa, H.; Okano, T. Langmuir 2008, 24, 10981.
13. Wei, J.; He, P.; Liu, A.; Chen, X.; Wang, X.; Jing, X. Macromol. Biosci. 2009, 9, 1237.
14. Mizutani, A.; Nagase, K.; Kikuchi, A.; Kanazawa, H.; Akiyama, Y.; Kobayashi, J.; Annaka, M.; Okano, T. J. Chromatogr. A 2010, 1217, 522.
15. Kuil, L.A.; Grove, D.M.; Gossage, R.A.; Zwikker, J.W.; Jenneskens, L.W.; Drenth, W.; Koten, G. Organometallics 1997, 16, 4985.
16. Harrisson, S.; Kapfenstein-Doak, H.; Davis, T.P. Macromolecules 2001, 34, 6214.
17. Nagao, D.; Sakamoto, T.; Konno, H.; Gu, S.; Konno, M. Langmuir 2006, 22, 10958.
18. Li, G.L.; Wan, D.; Neoh, K.G.; Kang, E.T. Macromolecules 2010, 43, 10275.
19. Shim, S.E.; Yang, S.; Jung, H.; Choe, S. Macromol. Res. 2004, 12, 233.
20. Gong, T.; Wang, C.C. J. Mater. Sci. 2008, 43, 1926.
Chapter 4:
1. Cao, K.; Yu, J.; Li, B.G.; Li, B.F.; Pan, Z.R. Chem. Eng. J. 2000, 78, 211.
2. Hong, J.; Hong, C.K.; Shim, S.E. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 302, 225.
3. Kim, O.H.; Lee, K.; Kim, K.; Lee, B.H.; Choe, S. Colloid Polym. Sci. 2006, 284, 909.
4. Mizutani, A.; Nagase, K.; Kikuchi, A.; Kanazawa, H.; Akiyama, Y.; Kobayashi, J.; Annaka, M.; Okano, T. J. Chromatogr. A 2010, 1217, 522.
5. Guo, L.; Pei, G.L.; Wang, T.J.; Wang, Z.W.; Jin, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 293, 58.
6. Yu, D.G.; An, J.H. Colloids and Surfaces A: Physicochem. Eng. Aspects 2004, 237, 87.
7. Wang, Y.; Xia, T.D.; Feng, H.X.; Zhang, H. Renew. Energy 2011, 36, 1814.
8. Kikuchi, A.; Okano, T. Macromol. Symp. 2004, 207, 217.
9. Bae, Y.H.; Okano, T.; Kim, S.W. J. Polym. Sci. Part B: Polym. Phys. 1990, 28, 923.
10. Mizutani, A.; Nagase, K.; Kikuchi, A.; Kanazawa, H.; Akiyama, Y.; Kobayashi, J.; Annaka, M.; Okano, T. J. Chromatogr. B 2010, 878, 2191.
11. Gu, S.; Akama, H.; Nagao, D.; Kobayashi, Y.; Konno, M. Langmuir 2004, 20, 7948.
Chapter 5:
1. Yang, S.C.; Yang, D.J.; Kim, J.; Hong, J.M.; Kim, H.G.; Kim, I.D.; Lee, H. Adv. Mater. 2008, 20, 1059.
2. Eun, T.H.; Kim, S.H.; Jeong, W.J.; Jeon, S.J.; Kim, S.H.; Yang, S.M. Chem. Mater. 2009, 21, 201.
3. Arnal, P.M.; Comotti, M.; Schüth, F. Angew. Chem. 2006, 118, 8404.
4. Tang, S.; Huang, X.; Chen, X.; Zheng, N. Adv. Funct. Mater. 2010, 20, 2442.
5. Xu, X.; Asher S.A. J. Am. Chem. Soc. 2004, 126, 7940.
6. Bruinsma, P.J.; Kim, A.Y.; Liu, J.; Baskaran, S. Chem. Mater. 1997, 9, 2507.
7. Hentze, H.P.; Raghavan, S.R.; McKelvey, C.A.; Kaler, E.W. Langmuir 2003, 19, 1069.
8. Yuan, J.; Bai, X.; Zhao, M.; Zheng, L. Langmuir 2010, 26, 11726.
9. Caruso, F.; Caruso, R.A.; Möhwald, H. Science 1998, 282, 1111.
10. Imhof A. Langmuir 2001, 17, 3579.
11. Luna-Xavier, J.; Guyot, A.; Bourgeat-Lami, E. J. Colloid Interface Sci. 2002, 250, 82.
12. Graf, C.; Vossen, D.L.J.; Imhof, A.; Blaaderen, A. Langmuir 2003, 19, 6693.
13. Lu, Y.; McLellan, J.; Xia, Y. Langmuir 2004, 20, 3464.
14. Pu, H.; Zhang, X.; Yuan, J.; Yang, Z. J. Colloid Interface Sci. 2009, 331, 389.
15. Zhang, L.; D’Acunzi, M.; Kappl, M.; Auernhammer, G.K.; Vollmer, D.; Kats, C.M.; Blaaderen, A. Langmuir 2009, 25, 2711.
16. Smith, J.N.; Meadows, J.; Williams, P.A. Langmuir 1996, 12, 3773.
17. Sato, T.; Kohnosu, S. Colloids and Surfaces A: Physicochem. Eng. Aspects 1994, 88, 197.
18. Lee, J.; Ha, J.U.; Choe, S.; Lee, C.S.; Shim, S.E. J. Colloid Interface Sci. 2006, 298, 663.
19. Kawaguchi, S.; Ito, K. Adv. Polym. Sci. 2005, 175, 299.
20. Jakob, A.M.; Schmedake, T.A. Chem. Mater. 2006, 18, 3173.
21. Enrichi, F. Ann. N.Y. Acad. Sci. 2008, 1130, 262.
22. Soriano, R.B.; Kpatcha, E.; Jakob, A.M.; Merkert, J.W.; Carlin, C.M.; Schmedakea, T.A. Appl. Phys. Lett. 2007, 91, 091909.
23. Kong, D.; Zhang, C.; Xu, Z.; Li, G.; Hou, Z.; Lin, J. J. Colloid Interface Sci. 2010, 352, 278.
24. Zhao, Y.; Li, Y.; Li, W.; Wu, Y.; Wu, L. Langmuir 2010, 26, 18430.
25. Carlos, L.D.; Sa’Ferreira, R.A.; Pereira, R.N.; Assunção, M.; Bermudez V.Z. J. Phys. Chem. B 2004, 108, 14924.
26. Liu, Y.Y.; Chen, H.; Ishizu, K. Langmuir 2011, 27, 1168.
指導教授 陳暉(Hui Chen) 審核日期 2011-5-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明