博碩士論文 983204044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.142.55.2
姓名 蔡逸霆(Yi-Ting Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米鈀觸媒之改質與甲苯完全氧化反應之應用
(Toluene oxidation over supported palladium catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗室先前的研究指出,奈米金/氧化鈰及奈米鈀/氧化鈰觸媒對於甲苯完全氧化反應有很高的活性。因此,吾人製備金–鈀雙金屬觸媒以期達到更佳的反應活性。在本研究中,製備一系列不同金比例的金–鈀/氧化鈰與金–鈀/二氧化鈦觸媒。先以初濕含浸法製備0.5 wt. %之鈀觸媒,再以沉積沉澱法製備金含量介於0.1 wt. %到1 wt. %之金–鈀雙金屬觸媒。使用高表面積且具有特殊微孔結構的氧化鈰(來自Nikki公司)以及二氧化鈦(來自Evonik Degussa公司)作為擔體。觸媒鑑定方面,主要是以X光繞射儀(XRD),穿透式電子顯微鏡(TEM),高解析度穿透式電子顯微鏡(HRTEM)與X光電子能譜儀(XPS),進行鑑定與分析。並使用甲苯作為本研究觸媒焚化之指標物。反應物甲苯之進料濃度為8.564 g/m3 (2085 ppm),空間流速為10,000 h-1。
TEM與HRTEM圖中顯示金與鈀的顆粒大小約為3到5奈米,且均勻分布於擔體上,其結果與XRD結果一致。由XPS中可發現在奈米鈀觸媒上加入適量的金,有助於鈀元素態的比例增加,同時也增進其反應活性。然而過量的引入金,會導致觸媒活性下降,原因為在觸媒表面上之金顆粒與鈀顆粒重疊,而金活性又比鈀活性差,因而造成反應活性下降。從活性測試中,金–鈀雙金屬觸媒之反應活性優於金、鈀物理混合觸媒,證明金與鈀之間有好的交互作用,與XPS結果相符。從實驗結果顯示出金–鈀雙金屬觸媒之反應活性優於單一活性金屬之觸媒,是因為金原子簇與鈀原子簇間有協同作用使得反應活性佳。對於甲苯完全氧化反應,金–鈀雙金屬觸媒是非常好的。
摘要(英) Au/CeO2 and Pd/CeO2 were reported to be very active to destruct toluene from this lab. Therefore, combination of gold and palladium is an interesting candidate to achieve a catalyst with higher activity. In this study, a series of Au–Pd/CeO2 and Au–Pd/TiO2 bimetallic catalysts with various Au loadings were prepared. Pd was loaded by incipient-wetness impregnation method and Au was loaded by deposition-precipitation method. The Pd loadings in all samples were fixed at 0.5 wt. %, and the content of gold was between 0.1 and 1 wt. %. High surface area CeO2 with unique microstructure from Nikki Company and TiO2 (P-25) from Evonik Degussa Company were used as the support. The catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). The catalysts were tested for total oxidation of toluene. The feed concentration of toluene was 8.564 g/m3 (2085 ppm), with GHSV= 10,000 h-1.
The TEM and HRTEM images showed that both of Au and Pd particle sizes were 3–5 nm and well-dispersed on the support. This result is consistent with the XRD studies. XPS study indicated that the addition of suitable amount of gold to Pd-based catalyst increased the proportion of metallic palladium and the catalytic activity. However, the overdoes of Au decreased the activity because the Au metal overlapped with the Pd metal and Au was less active than Pd. In activity test, Au–Pd bimetallic catalyst is better than a physically-mixed Au-based and Pd-based catalyst, which indicates there is a good interaction between gold and palladium. In conclusion, Au–Pd bimetallic catalysts were superior to Au and Pd monometallic catalysts due to the synergetic effect between Au and Pd nanocluster. Au–Pd bimetallic catalysts are very promising for toluene destruction.
關鍵字(中) ★ 觸媒焚化
★ 金
★ 氧化鈰
★ 金-鈀雙金屬觸媒
★ 鈀
★ 二氧化鈦
★ 甲苯
關鍵字(英) ★ Toluene
★ TiO2
★ CeO2
★ Bimetallic Au-Pd catalysts
★ Palladium
★ Gold
★ Catalytic combustion
論文目次 摘要........................................i
Abstract...................................ii
Table of Contents..........................iv
List of Figures...........................vii
List of Tables..............................x
Chapter 1. Introduction.....................1
Chapter 2. Literature review................3
2.1 VOC control technologies................3
2.1.1 Adsorption............................3
2.1.2 Condensation .........................3
2.1.3 Thermal oxidation....................3
2.1.4 Catalytic oxidation..................3
2.2 Preparation method.....................4
2.2.1 Impregnation method..................4
2.2.2 Co-precipitation method..............5
2.2.3 Deposition-precipitation method......5
2.2.4 Colloidal method.....................7
2.3 Gold and Palladium Catalysts...........7
2.3.1 CO oxidation .........................8
2.3.2 Water purification...................8
2.3.3 Hydrogenation of aromatics...........9
2.3.4 Three-way catalysts.................10
2.4 Toluene oxidation.....................11
2.4.1 Support effect......................11
2.4.2 Calcined Temperature effect.........12
2.4.3 Effect of pretreatment method.......12
2.4.4 Reaction mechanism..................13
Chapter 3. Experimental...................16
3.1 Chemicals.............................16
3.2 Catalyst preparation..................16
3.2.1 Preparation of support..............16
3.2.2 Preparation of palladium catalysts..17
3.2.3 Preparation of gold catalysts.......18
3.2.4 Preparation of Au–Pd bimetallic catalysts........18
3.3 Characterization......................20
3.3.1 ICP-MS..............................20
3.3.2 XRD .................................21
3.3.3 N2-sorption.........................21
3.3.4 TEM and HRTEM.......................22
3.3.5 XPS .................................22
3.3.6 H2-TPR..............................22
3.4 Toluene oxidation reaction............23
Chapter 4. Catalytic combustion of toluene on Pd/CeO2–TiO2 catalysts............................26
4.1 Introduction..........................26
4.2 Results and discussion................27
4.2.1 ICP-MS..............................27
4.2.2 XRD .................................28
4.2.3 N2-sorption.........................30
4.2.4 TEM and HRTEM.......................31
4.2.5 XPS .................................39
4.2.6 H2-TPR..............................42
4.3 Catalytic activity on toluene oxidation reaction...44
4.4 Summary...............................44
Chapter 5. The catalytic properties of Au–Pd bimetallic catalysts on oxidation of toluene.........46
5.1 Introduction..........................46
5.2 Results and discussion................47
5.2.1 ICP-MS..............................47
5.2.2 XRD .................................48
5.2.3 TEM .................................50
5.2.4 HRTEM...............................56
5.2.5 XPS .................................62
5.3 Catalytic activity on toluene oxidation reaction....70
5.4 Summary...............................74
Chapter 6. Summary........................75
Reference .................................77
參考文獻 Batista, J., Pintar, A., Gomilsek, J. P., Kodre, A., Bornette, F., “On the structural
characteristics of γ-alumina-supported Pd–Cu bimetallic catalysts”, Appl. Catal. A: Gen. 217 (2001) 55.
Bamwenda, G. R., Tsubota, S., Nakamura, T., Haruta, M., “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation” Catal. Lett. 44 (1997) 83.
Bedia, J., Rosas, J. M., Rodriguez-Mirasol, J., Cordero, T., “Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation”, Appl. Catal. B: Environ. 94 (2010) 8.
Bond, G. C., Thompson, D. T., “Catalysis by gold”, Catal. Rev. Sci. Eng. 41 (1999) 319.
Boucher, M. B., Goergen, S., Yi, N., Flytzani-Stephanopoulos, M., “Shape effects in metal oxide supported nanoscale gold catalysts”, Phys. Chem. Chem. Phys. 13 (2011) 2517.
Chen, Y., Lim, H., Tang, Q., Gao, Y., Sun, T., Yan, Q., Yang, Y., “Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves”, Appl. Catal. A: Gen. 380 (2010) 55.
Chen, Z. and Gao, Q., “Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites”, Appl. Catal. B: Environ. 84 (2008) 790.
Costello, C. K., Kung, M. C., Oh, H. -S., Wang, Y., Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Appl. Catal. A: Gen. 232 (2002) 159.
Coq, B., Figueras, F., “Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance”, J. Mol. Catal. A: Chem. 173 (2001) 117.
Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today 72 (2002) 89.
Dimitratos, N., Lopez-Sanchez, J. A., Anthonykutty, J. M., Brett, G., Carley, A.F., Tiruvalam, R.C., Herzing, A. A., Kiely, C. J., Knight, D.W., Hutchings, G. J., “Oxidation of glycerol using gold–palladium alloy-supported nanocrystals”, Phys. Chem. Chem. Phys. 11 (2009) 4952.
Dong, G., Wang, J., Gao, Y., Chen., S., “A novel catalyst for CO oxidation at low temperature”, Catal. Lett. 58 (1999) 37.
Edwards, J. K., Solsona, B. E., Landon, P., Carley, A. F., Herzing, A., Kiely, C. J., Hutchings, G. J., “Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts”, J. Catal. 236 (2005) 69.
Farrauto, R. J., Heck, R. M., “Catalytic converters: state of the art and perspectives”, Catal. Today 51 (1999) 351.
Gennequin, C., Lamallem, M., Cousin, R., Siffert, S., Idakiev, V., Tabakova, T., Aboukaı¨s, A., Su, B. L., “Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts”, J. Mater. Sci. 44 (2009) 6654.
Giraudon, J. M., Elhachimi, A., Wyrwalski, F., Siffert, S., Aboukais, A., Lamonier, J. F., Leclercq, G., “Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene”, Appl. Catal. B: Environ. 75 (2007) 157.
Guczi, L., Beck, A., Horváth, A., Koppány, Zs., Stefler, G., Frey, K., Sajó, I., Geszti, O., Bazin, D., Lynch, J., “AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation”, J. Mol. Catal. A: Chem. 204 (2003) 545.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175.
Haruta, M., “Catalysis of gold nanoparticles deposited on metal oxides”, Cattech 6 (2002) 102.
Haruta, M., “Gold as a novel catalyst in the 21st century: Preparation, working mechanism and application”, Gold Bull. 37 (2004) 27.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation”, J. New Mater. Electrochem. Sys. 7 (2004) 163.
Hosseini, M., Siffert, S., Tidahy, H. L., Cousin, R., Lamonier, J. -F., Aboukais, A., Vantomme, A., Roussel, M., Su, B. -L., “Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds”, Catal. Today 122 (2007) 391.
Idakiev, V., Ilieva, L., Andreeva, D., Blin, J.-L., Gigot, L.and Su, B.-L., “Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia”, Appl. Catal. A: Gen. 243 (2003) 25.
Kim, H. S., Kim, T. W., Koh, H. L., Lee, S. H., Min, B. R., “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A: Gen. 280 (2005) 125.
Kim, S. C., Nahm, S. W., Shim, W. G., Lee, J. W., Moon, H., “Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs”, J. Hazard. Mater. 141 (2007) 305.
Kim, S. C., Shim, W. G, “Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds”, Appl. Catal. B: Environ. 92 (2009) 429.
Lamallem, M., Ayadi, H. E., Gennequin, C., Cousin, R., Siffert, S., Aïssi, F., Aboukaïs, A., “Effect of the preparation method on Au/Ce-Ti-O catalysts activity for VOCs oxidation”, Catal. Today 137 (2008) 367.
Liebscher, H., “Economic solutions for compliance to the new European VOC Directive”, Prog. Org. Coat. 40 (2000) 75.
Liotta, L. F., “Catalytic oxidation of volatile organic compounds on supported noble metals”, Appl. Catal. B: Environ. 100 (2010) 403.
Liu, H., Kozlov, A. I., Kozlova, A. P., Shido, T., Asakura, K., Iwasawa, Y., “Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide”, J. Catal. 185 (1999) 252.
Lopez-Sanchez, J. A., Dimitratos, N., Miedziak, P., Ntainjua, E., Edwards, J. K., Morgan, D., Carley, A.F., Tiruvalam, R., Kiely, C. J., Hutchings, G. J., “Au–Pd supported nanocrystals prepared by a sol immobilization technique as catalysts for selective chemical synthesis”, Phys. Chem. Chem. Phys. 10 (2008) 1921.
Lopez-Sanchez, J. A., Dimitratos, N., Glanville, N., Kesavan, L., Hammond, C., Edwards, J. K., Carley, A. F., Kiely, C. J., Hutchings, G. J., “Reactivity studies of Au–Pd supported nanoparticles for catalytic applications”, Appl. Catal. A: Gen. 391 (2011) 400.
Luo, M., Chen, J., Chen, L., Lu, J., Feng, Z., Li, C., “Structure and Redox Properties of CexTi1-xO2 Solid Solution”, Chem. Mater. 13 (2001) 197.
Luo, M. F., He, M., Xie, Y. L., Fang, P., Jin, L. Y., “Toluene oxidation on Pd catalysts supported by CeO2–Y2O3 washcoated cordierite honeycomb” Appl. Catal. B: Environ. 69 (2007) 213.
Matsumura, Y., Shen, W. J., Ichihashi, Y., Okumura, M., “Low-Temperature Methanol Synthesis Catalyzed over Ultrafine Palladium Particles Supported on Cerium Oxide”, J. Catal. 197 (2001) 267.
Morikawa, A., Suzuki, T., Kanazawa, T., Kikuta, K., Suda, A., Shinjo, H., “A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier”, Appl. Catal. B: Environ. 78 (2008) 210.
Narui, K., Yata, H., Furuta, K., Nishida, A., Kohtoku, Y., Matsuzaki, T., “Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles”, Appl. Catal. A: Gen. 179 (1999) 165.
Nutt, M. O., Heck, K. N., Alvarez, P., Wong, M. S., “Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination”, Appl. Catal. B: Environ.69 (2006) 115.
Oh, H. -S, Yang, J. H., Costello, C. K., Wang, Y. M., Bare, S. R., Kung, H. H., Kung, M. C., “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts”, J. Catal. 210 (2002) 375.
Okumura, K., Kobayashi, T., Tanaka, H., Niwa, M., “Toluene combustion over palladium supported on various metal oxide supports”, Appl. Catal. B: Environ. 44 (2003) 325.
Otsuka, K., Wang, Y., Nakamura, M., “Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature”, Appl. Catal. A: Gen. 183 (1999) 317.
Ousmane, M., Liotta, L. F., Carlo, G. D., Pantaleo, G., Venezia, A. M., Deganello, G., Retailleau, L., Boreave, A., Giroir-Fendler, A., “Supported Au catalysts for low-temperature abatement of propene and toluene as model VOCs: support effect”, Appl. Catal. B: Environ.101 (2011) 629.
Papaefthimiou, P., Ioannides, T., Verykios, X. E., “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175.
Pawelec, B., Venezia, A. M., La Parola, V., Cano-Serrano, E., Campos-Martin, J. M., Fierro, J. L. G., “AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation”, Appl. Surf. Sci. 242 (2005) 380.
Pengpanich, S., Meeyoo, V., Rirksomboon, T., Bunyakiat, K., “Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis”, Appl. Catal. A: Gen. 234 (2002) 221.
Pradeep, T., Anshup, “Noble metal nanoparticles for water purification: A critical review”, Thin Solid Films 517 (2009) 6441.
Reddy, B. M., Bharali, P., Saikia, P., Thrimurthulu, G., Yamada, Y., Kobayashi, T., “Thermal Stability and Dispersion Behavior of Nanostructured CexZr1-xO2 Mixed Oxides over Anatase-TiO2: A Combined Study of CO Oxidation and Characterization by XRD, XPS, TPR, HREM, and UV-Vis DRS”, Ind. Eng. Chem. Res. 48 (2009) 453.
Ribeiro, F. H., Chow, M., Dallabetta, R.A., “Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts”, J. Catal. 146 (1994) 537.
Schubert, M. M., Hackenberg, S., van Veen, A. C., Muhler, M., Plzak, V., Behm, R. J., “CO Oxidation over Supported Gold Catalysts—Inert and Active Support Materials and Their Role for the Oxygen Supply during Reaction”, J. Catal. 197 (2001) 113.
Si, R., Flytzani-Stephanopoulos, M., “Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction.”, Angew. Chem. Int. Ed. 47 (2008) 2884.
Tidahy, H. L., Siffert, S., Wyrwalski, F., Lamonier, J. F., Aboukais, A., “Catalytic activity of copper and palladium based catalysts for toluene total oxidation”, Catal. Today 119 (2007) 317.
Tsubota, S., Cunningham, D. A. H., Bando, Y., Haruta, M., “Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO”, Stud. Surf. Sci. Catal. 91 (1995) 227.
Venezia, A. M., Liotta, L. F., Dganello, G., Schay, Z., Horvath, D., Guczi, L., “Catalytic CO oxidation over pumice supported Pd–Ag catalysts”, Appl. Catal. A: Gen. 211 (2001) 167.
Widmann, D., Liu, Y., Schuth, F., Behm, R. J., “Support effects in the Au-catalyzed CO oxidation–Correlation between activity, oxygen storage capacity, and support reducibility”, J. Catal. 276 (2010) 292.
Wolf, A., Schüth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: Gen. 226 (2002) 1.
Zanella, R., Delannoy, L., Louis, C., “Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea”, Appl. Catal. A: Gen. 291 (2005) 62.
Zhang, Q., Zhao, L., Teng, B., Xie, Y., Yue, L., “Pd/Ce0.8Zr0.2O2/Substrate Monolithic Catalyst for Toluene Catalytic Combustion”, Chin J Catal. 29 (2008) 373.
Zhang, G., Wang, Y., Wang, X., Chen, Y., Zhou, Y., Tang, Y., Lu, L., Bao, J., Lu, T., “Preparation of Pd–Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation”, Appl. Catal. B: Environ. 102 (2011) 614.
Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J., “CO oxidation at low temperature over Pd supported on CeO2–TiO2 composite oxide”, Catal. Today 126 (2007) 382.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2011-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明