博碩士論文 983204020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.148.102.202
姓名 林建翰(Chien-Han Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用表面化學改質之奈米層狀結構矽基材晶片與四氧化三鐵磁性奈米粒子以提升磷酸化胜肽於質譜儀檢測之靈敏度之研究
(Enhancement of Mass Spectrometry Sensitivity on Phosphopeptide Using Chemical Modified Nanofilament Silicon (nSi) Chip and Iron(II, III) Oxide Magnetic Nanoparticles)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,透過組織工程,許多研究團隊於再生醫學新技術有了重大突破,以幹細胞修復受損組織成功的案例也逐年增加。然而幹細胞是否能應用於臨床治療,取決於適當的細胞調控,其和信號傳遞過程中伴隨的蛋白質磷酸化有著密不可分的關係。不幸的是,磷酸化蛋白質在細胞樣本內含量極低,分析前複雜的純化程序往往也在所難免。
質譜儀可對未知生物分子提供珍貴的質荷比之定性與定量資訊,向來是蛋白質體學實驗及生物分析領域上一大利器。近年研究發現奈米結構多孔矽具有吸收紫外光雷射能力,作為輔助脫附游離的介質具有高靈敏度的表現,且在分析小分子樣本時不受基質所干擾。本研究成功研發出以多孔矽改良之奈米層狀結構矽(nanofilament silicon, nSi)質譜分析晶片作為基材,並以特定官能基如羧基、胺基、苯環或金屬親合等接枝於表面,直接分離樣本胜肽。再結合Fe3O4/TiO2 與Fe3O4/ZnO 核/殼結構奈米粒子,藉其表面與磷酸根之專一性吸附更可辨識出β-casein digest中的磷酸化胜肽,且偵測極限可達10-9 M以下。此法可簡化複雜的磷酸化胜肽純化程序並增加質譜分析的效能與選擇性,將可使幹細胞與再生醫學研究效率大幅提升。
摘要(英) In recent year, many research groups have made breakthrough in regenerative medicine through tissue engineering. The number of successful cases using stem cell to repair the damage organ also increases year by year. A appropriate cell regulations facilitate stem cell for possible application to clinical treatment, and the regulation deeply related to protein phosphorylation in cell transduction pathway. Unfortunately, low abundance of phosphorylated peptides and proteins in cell makes identification of phosphorylation sites difficult; hence a complicated purification process prior to analysis is usually unavoidable.
Mass spectrometry (MS) is a useful tool to identify unknown biomolecules qualitatively and quantitatively in proteomics and other related bioanalysis field because it provides valuable mass to charge (m/z) information. In recent researches, silicon-based nanostructure are used as UV absorbing media to ionize biomolecules and show high sensitivity on low molecular weight biological samples without matrix background. In this study, we used nanofilament silicon (nSi) chips as a base which graft the different functional groups onto the chip surface such as carboxyl, amino, phenyl or immobilized metal affinity. We found those modification could separate sample peptides specificly. Phosphopeptide derived from β-casein digest has also been detected by nSi combining with Fe3O4/TiO2 and Fe3O4/ZnO core/shell nanoparticles, and the detection limit could reach 10-9 M. These approaches enable us to simplify the purification process of phosphorylated peptides and proteins, increase the selectivity and sensitivity of MS analysis, and make stem cell and regenerative medicine research more efficient.
關鍵字(中) ★ 表面化學改質
★ 奈米層狀結構矽基材晶片
★ 表面輔助雷射脫附質譜儀
★ 磁性奈米粒子
★ 磷酸化胜肽
關鍵字(英) ★ nanofilament silicon (nSi) chip
★ SALDI-MS
★ magnetic nanoparticles
★ phosphopeptide
★ surface modification
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 5
第二章 文獻回顧 6
2.1 軟式游離法之發展 6
2.1.1 電噴灑游離法-ESI 6
2.1.2 基質輔助雷射脫附游離法-MALDI 7
2.1.3 表面增強雷射脫附游離法-SELDI 9
2.1.4 表面輔助雷射脫附游離法-SALDI 12
2.2 矽基材雷射脫附游離法-DIOS 15
2.2.1 DIOS之離子化機制 15
2.2.2 DIOS之表面化學改質 18
2.2.2.1 矽基材表面改質法 18
2.2.2.2 表面改質對DIOS-MS之影響 24
2.2.3 DIOS之結構改良與最佳化 29
2.3 磷酸化蛋白質之分析 33
2.3.1 磷酸化蛋白質簡介 33
2.3.2 磷酸化蛋白質樣本分析前處理 35
2.3.3 磷酸化蛋白質樣本純化 37
2.3.3.1 免疫沉降法 38
2.3.3.2 化學衍生法 38
2.3.3.3 金屬親合法 39
2.3.4 磷酸化蛋白質之質譜儀檢測應用 41
2.3.4.1 與質譜儀結合之純化法 41
2.3.4.2 蛋白質定序與磷酸化位置辨識 44
第三章 材料與方法 47
3.1 實驗設備 47
3.2 實驗藥品 48
3.3 實驗方法 51
3.3.1 矽晶片表面蝕刻 51
3.3.2 nSi Chip表面化學改質 53
3.3.2.1 NH2正電性官能基表面改質法 54
3.3.2.2 COOH負電性官能基表面改質法 55
3.3.2.3 Phenyl疏水性官能基表面改質法 56
3.3.2.4 Phenyl-NH2疏水性正電官能基表面改質法 57
3.3.2.5 Phenyl-COOH疏水性負電官能基表面改質法 58
3.3.2.6 帶有Ni離子的IMA-Ni2+表面改質法[98-100] 59
3.3.2.7 測試nSi Chip改質成果與對混合胜肽分離之效果 60
3.3.3 Fe3O4/TiO2 核/殼結構磁性奈米粒子合成[14] 61
3.3.4 Fe3O4/ZnO 核/殼結構磁性奈米粒子合成[15] 64
3.3.5 高靈敏度nSi Chip無基質質譜分析法 66
3.3.6 nSi Chip結合奈米粒子之質譜分析法 67
3.3.7 甲醇對nSi Chip離子化能力影響 69
3.3.8 Citric Buffer對nSi Chip質譜效能影響 70
第四章 結果與討論 72
4.1 nSi Chip表面化學改質 72
4.1.1 AFM驗證 72
4.1.2 ESCA驗證 75
4.1.2.1 鍍金 75
4.1.2.2 NH2表面改質 76
4.1.2.3 COOH表面改質 77
4.1.2.4 Phenyl表面改質 78
4.1.2.5 Phenyl-NH2 表面改質 79
4.1.2.6 Phenyl-COOH表面改質 80
4.1.2.7 IMA-Ni2+表面改質 81
4.1.3 SELDI-MS驗證 82
4.1.3.1 鍍金與浸泡甲醇影響 84
4.1.3.2 NH2表面改質 88
4.1.3.3 COOH表面改質 91
4.1.3.4 Phenyl表面改質 94
4.1.3.5 Phenyl-NH2表面改質 97
4.1.3.6 Phenyl-COOH表面改質 100
4.1.3.7 IMA-Ni2+ 表面改質 103
4.2 Fe3O4@TiO2與Fe3O4@ZnO奈米粒子應用 105
4.2.1 SEM觀測 105
4.2.2 Citric Buffer對nSi效能之影響 108
4.2.3.1 以Peptide Mixture測試純化與質譜能力 110
4.2.3.2 以β-casein測試純化與質譜能力 114
4.2.4 Fe3O4@ZnO 奈米粒子純化效果試驗 117
4.2.4.1 以Peptide Mixture測試純化與質譜能力 117
4.2.4.2 以β-casein測試純化與質譜能力 121
第五章 結論與未來展望 124
參考文獻 126
附錄 140
參考文獻 1. Mason, C.; Dunnill, P., A brief definition of regenerative medicine. Regen Med 2008, 3 (1), 1-5.
2. Mason, C.; Manzotti, E., 'The Little Purple Book': BSI Glossary of Regenerative Medicine. Regen Med 2009, 4 (4), 483-484.
3. Thomson, J. A.; Swaney, D. L.; Wenger, C. D.; Coon, J. J., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. P Natl Acad Sci USA 2009, 106 (4), 995-1000.
4. Blagoev, B.; Olsen, J. V.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127 (3), 635-648.
5. Hunter, T., Signaling - 2000 and beyond. Cell 2000, 100 (1), 113-127.
6. Mann M., Ong S. E., Grønborg M., Steen H., Jensen O. N., Pandey A., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 2002, 20 (6), 261-268.
7. Cohen, P., The role of protein phosphorylation in human health and disease - Delivered on June 30th 2001 at the FEBS Meeting in Lisbon. Eur J Biochem 2001, 268 (19), 5001-5010.
8. McLachlin, D. T., Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 2001, 5 (5), 591-602.
9. Larsen, M. R.; Thingholm, T. E.; Jorgensen, T. J. D.; Jensen, O. N., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 2006, 1 (4), 1929-1935.
10. Wei, J.; Buriak, J. M.; Siuzdak, G., Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399 (6733), 243-246.
11. Thomas, J. J.; Shen, Z. X.; Blackledge, R.; Siuzdak, G., Desorption-ionization on silicon mass spectrometry: an application in forensics. Anal Chim Acta 2001, 442 (2), 183-190.
12. Huikko, K.; Ostman, P.; Sauber, C.; Mandel, F.; Grigoras, K.; Franssila, S.; Kotiaho, T.; Kostiainen, R., Feasibility of atmospheric pressure desorption/ionization on silicon mass spectrometry in analysis of drugs. Eur J Pharm Sci 2003, 17(12), 1339-1343.
13. Tsao, C. W.; Parshant, K.; Jikun, L.; DeVoe, D. L., Dynamic Electrowetting on Nanofilament Silicon for Matrix-Free Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2008, 80 (8), 2973-2981.
14. Chen, C. T.; Chen, Y. C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2005, 77 (18), 5912-5919.
15. Chen, W. Y.; Chen, Y. C., Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 2010, 398 (5), 2049-2057.
16. Munson, M. S. B., Field, F. H., Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88 (12), 9.
17. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
18. Gaskell, S. J., Electrospray: Principles and practice. J Mass Spectrom 1997, 32 (7), 677-688.
19. Cole, R. B., Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 2000, 35 (7), 763-772.
20. Kebarle, P., A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom 2000, 35 (7), 804-817.
21. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T., Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-flight Mass Spectrometry. Rapid Commun Mass Sp 1988, 2 (8), 3.
22. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60 (20), 2299-2301.
23. Karas, M.; Bahr, U.; Ingendoh, A.; Nordhoff, E.; Stahl, B.; Strupat, K.; Hillenkamp, F., Principles and Applications of Matrix-Assisted Uv Laser Desorption Ionization Mass-Spectrometry. Anal Chim Acta 1990, 241 (2), 175-185.
24. Stults, J. T., Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry (Maldi-Ms). Curr Opin Struc Biol 1995, 5 (5), 691-698.
25. Bahr, U.; Karas, M.; Hillenkamp, F., Analysis of Biopolymers by Matrix-Assisted Laser-Desorption Ionization (Maldi) Mass-Spectrometry. Fresen J Anal Chem 1994, 348 (12), 783-791.
26. Cohen, L. H.; Gusev, A. I., Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 2002, 373 (7), 571-586.
27. Merchant, M.; Weinberger, S. R., Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000, 21 (6), 1164-1177.
28. Vlahou, A.; Schellhammer, P. F.; Mendrinos, S.; Patel, K.; Kondylis, F. I.; Gong, L.; Nasim, S.; Wright Jr, G. L., Jr., Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 2001, 158 (4), 1491-1502.
29. Hutchens, T. W.; Yip, T. T. Method and apparatus for desorption and ionization of analytes. US patent 1998, (5,719,060).
30. Hutchens, T. W.; Yip, T. T. Surface-enhanced neat desorption for disorption and detection of analytes. US patent 1999, (5,894,063).
31. Hutchens, T. W.; Yip, T. T., New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules. Rapid Commun Mass Sp 1993, 7 (7), 576-580.
32. Wright, G. L.; Cazares, L. H.; Leung, S. M.; Nasim, S.; Adam, B. L.; Yip, T. T.; Schellhammer, P. F.; Gong, L.; Vlahou, A., Proteinchip((R)) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer P D 1999, 2 (5-6), 264-276.
33. Weinberger, S. R.; Hlousek, L., Apparatus for microfluidic processing and reading of biochip arrays. US patent 2006, (10,769,693).
34. Chen, Y. C.; Shiea, J.; Sunner, J., Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 2000, 14 (2), 86-90
35. Sunner, J.; Dratz, E.; Chen, Y. C., Graphite Surface Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry of Peptides and Proteins from Liquid Solutions. Analytical Chemistry 1995, 67 (23), 4335-4342.
36. Peterson, D. S., Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 2007, 26 (1), 19-34.
37. Xu, S. Y.; Li, Y. F.; Zou, H. F.; Qiu, J. S.; Guo, Z.; Guo, B. C., Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry 2003, 75 (22), 6191-6195.
38. Chen, C. T.; Chen, Y. C., Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Sp 2004, 18 (17), 1956-1964.
39. Seino, T.; Sato, H.; Yamamoto, A.; Nemoto, A.; Torimura, M.; Tao, H., Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Analytical Chemistry 2007, 79 (13), 4827-4832.
40. Hsu, N. F.; Tseng, S. Y.; Wu, C. Y.; Ren, C. T.; Lee, Y. C.; Wong, C. H.; Chen, C. H., Desorption ionization of biomolecules on metals. Analytical Chemistry 2008, 80 (13), 5203-5210.
41. Tsao, C. W.; Kumar, P.; Liu, J. K.; Devoe, L., Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. Analytical Chemistry 2008, 80 (8), 2973-2981.
42. Law, K. P.; Larkin, J. R., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 2011, 399 (8), 2597-2622.
43. Lewis, W. G.; Shen, Z. X.; Finn, M. G.; Siuzdak, G., Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications. Int J Mass Spectrom 2003, 226 (1), 107-116.
44. Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J., On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces. Journal of Chemical Physics 2001, 115 (4), 1891-1901.
45. Xiao, Y. S.; Retterer, S. T.; Thomas, D. K.; Tao, J. Y.; He, L., Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry. J Phys Chem C 2009, 113 (8), 3076-3083.
46. Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S., On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. Journal of Chemical Physics 2008, 128 (1), 1-19.
47. Janshoff, A.; Steinem, C.; Lin, V. S. Y.; Ghadiri, M. R.; Sailor, M. J., Characterization and application of macroporous P-type silicon Fabry-Perot layers for biosensor devices. Abstr Pap Am Chem S 1998, 216, U89-U89.
48. Blau, K.; Hackett, J. M., Handbook of Derivatives for Chromatography. 2nd ed.; John Wiley and Sons: New York, 1993.
49. Plueddemann, E. P., Silane Coupling Agents.; Plenum Press: New York, 1982.
50. Dubin, V. M.; Vieillard, C.; Ozanam, F.; Chazalviel, J. N., Preparation and Characterization of Surface-Modified Luminescent Porous Silicon. Phys Status Solidi B 1995, 190 (1), 47-52.
51. Lees, I. N.; Lin, H. H.; Canaria, C. A.; Gurtner, C.; Sailor, M. J.; Miskelly, G. M., Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 2003, 19 (23), 9812-9817.
52. Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J Am Chem Soc 1995, 117 (11), 3145-3155.
53. Buriak, J. M.; Allen, M. J., Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 1998, 120 (6), 1339-1340.
54. Buriak, J. M.; Stewart, M. P.; Geders, T. W.; Allen, M. J.; Choi, H. C.; Smith, J.; Raftery, D.; Canham, L. T., Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 1999, 121 (49), 11491-11502.
55. deVilleneuve, C. H.; Pinson, J.; Bernard, M. C.; Allongue, P., Electrochemical formation of close-packed phenyl layers on Si(111). J Phys Chem B 1997, 101 (14), 2415-2420.
56. Trauger, S. A.; Go, E. P.; Shen, Z.; Apon, J. V.; Compton, B. J.; Bouvier, E. S. P.; Finn, M. G.; Siuzdak, G., High Sensitivity and Analyte Capture with Desorption/lonization Mass Spectrometry on Silylated Porous Silicon. Analytical Chemistry 2004, 76 (15), 4484-4489.
57. Meng, J. C.; Averbuj, C.; Lewis, W. G.; Siuzdak, G.; Finn, M. G., Cleavable linkers for porous silicon-based mass spectrometry. Angew Chem Int Edit 2004, 43 (10), 1255-1260.
58. Zhang, W.; Nowlan, D. T.; Thomson, L. M.; Lackowski, W. M.; Simanek, E. E., Orthogonal, convergent syntheses of dendrimers based on melamine with one or two unique surface sites for manipulation. J Am Chem Soc 2001, 123 (37), 8914-8922.
59. Shmigol, I. V.; Alekseev, S. A.; Lavrynenko, O. Y.; Vasylieva, N. S.; Zaitsev, V. N.; Barbier, D.; Pokrovsky, V. A., Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes. J Mass Spectrom 2009, 44 (8), 1234-1240.
60. Go, E. P.; Apon, J. V.; Luo, G. H.; Saghatelian, A.; Daniels, R. H.; V, S.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G., Desorption/ionization on silicon nanowires. Analytical Chemistry 2005, 77 (6), 1641-1646.
61. Li, X.; Bohn, P. W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters 2000, 77 (16), 2572-2574.
62. Chen, W. Y.; Huang, J. T.; Cheng, Y. C.; Chien, C. C.; Tsao, C. W., Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry. Anal Chim Acta 2011, 687 (2), 97-104.
63. Temporini, C.; Callerli, E.; Massolini, G.; Caccialanza, G., Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 2008, 27 (3), 207-236.
64. Graves, J. D.; Krebs, E. G., Protein phosphorylation and signal transduction. Pharmacol Therapeut 1999, 82 (2-3), 111-121.
65. Puttick, J.; Baker, E. N.; Delbaere, L. T. J., Histidine phosphorylation in biological systems. Bba-Proteins Proteom 2008, 1784 (1), 100-105.
66. Reinders, J.; Sickmann, A., State-of-the-art in phosphoproteomics. Proteomics 2005, 5 (16), 4052-4061.
67. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R., Analytical strategies for phosphoproteomics. Proteomics 2009, 9 (6), 1451-1468.
68. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
69. Su, H. C.; Hutchison, C. A.; Giddings, M. C., Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. Bmc Microbiol 2007, 7 (63), 1-15.
70. Tibaldi, E.; Brunati, A. M.; Massimino, M. L.; Stringaro, A.; Colone, M.; Agostinelli, E.; Arancia, G.; Toninello, A., Src-tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 2008, 104 (3), 840-849.
71. Hunter, T.; Sefton, B. M., Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 1980, 77 (3), 1311-1315.
72. Sevecka, M.; MacBeath, G., State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods 2006, 3 (10), 825-831.
73. Zhou, H. L.; Watts, J. D.; Aebersold, R., A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 2001, 19 (4), 375-378.
74. Thaler, F.; Valsasina, B.; Baldi, R.; Jin, X.; Stewart, A.; Isacchi, A.; Kalisz, H. M.; Rusconi, L., A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem 2003, 376 (3), 366-373.
75. Wang, Q.; Shen, J.; Li, Z. F.; Jie, J. Z.; Wang, W. Y.; Wang, J.; Zhang, Z. T.; Li, Z. X.; Yan, L.; Gu, J., Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer. Bmc Cancer 2009, 9 (287), 1-9.
76. Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258 (5536), 598-599.
77. Hochuli, E.; Dobeli, H.; Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 1987, 411, 177-184.
78. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 1986, 154 (1), 250-254.
79. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20 (3), 301-305.
80. Trinidad, J. C.; Specht, C. G.; Thalhammer, A.; Schoepfer, R.; Burlingame, A. L., Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 2006, 5 (5), 914-922.
81. Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y., Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Analytical Chemistry 2005, 77 (16), 5144-5154.
82. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J. D., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4 (7), 873-886.
83. Jensen, S. S.; Larsen, M. R., Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Sp 2007, 21 (22), 3635-3645.
84. Thingholm, T. E.; Jensen, O. N.; Robinson, P. J.; Larsen, M. R., SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 2008, 7 (4), 661-671.
85. Xu, Y. D.; Watson, J. T.; Bruening, M. L., Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Analytical Chemistry 2003, 75 (2), 185-190.
86. Dunn, J. D.; Igrisan, E. A.; Palumbo, A. M.; Reid, G. E.; Bruening, M. L., Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes. Analytical Chemistry 2008, 80 (15), 5727-5735.
87. Wang, W. H.; Bruening, M. L., Phosphopeptide enrichment on functionalized polymer microspots for MALDI-MS analysis. Analyst 2009, 134 (3), 512-518.
88. Li, Y.; Leng, T. H.; Lin, H. Q.; Deng, C. H.; Xu, X. Q.; Yao, N.; Yang, P. Y.; Zhang, X. M., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 2007, 6 (11), 4498-4510.
89. Liu, J. C.; Tsai, P. J.; Lee, Y. C.; Chen, Y. C., Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Analytical Chemistry 2008, 80 (14), 5425-5432.
90. Li, Y.; Lin, H. Q.; Deng, C. H.; Yang, P. Y.; Zhang, X. M., Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 2008, 8 (2), 238-249.
91. Dunn, J. D.; Reid, G. E.; Bruening, M. L., Techniques for Phosphopeptide Enrichment Prior to Analysis by Mass Spectrometry. Mass Spectrom Rev 2010, 29 (1), 29-54.
92. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem 1949, 22 (3), 475.
93. Mann, M.; Hojrup, P.; Roepstorff, P., Use of Mass-Spectrometric Molecular-Weight Information to Identify Proteins in Sequence Databases. Biol Mass Spectrom 1993, 22 (6), 338-345.
94. Williamson, B. L.; Marchese, J.; Morrice, N. A., Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 2006, 5 (2), 337-346.
95. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207.
96. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1169.
97. Dunn, J. D.; Igrisan, E. A.; Palumbo, A. M.; Reid, G. E.; Bruening, M. L., Phosphopeptide Enrichment Using MALDI Plates Modified with High-Capacity Polymer Brushes. Analytical Chemistry 2008, 80 (15), 5727-5735.
98. Sam, S.; Touahir, L.; Andresa, J. S.; Allongue, P.; Chazalviel, J. N.; Gouget-Laemmel, A. C.; de Villeneuve, C. H.; Moraillon, A.; Ozanam, F.; Gabouze, N.; Djebbar, S., Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2010, 26 (2), 809-814
99. Glazer, A. N., Bioconjugate techniques - Hermanson,GT. Nature 1996, 381 (6580), 290-290.
100. Shen, Z. X.; Thomas, J. J.; Averbuj, C.; Broo, K. M.; Engelhard, M.; Crowell, J. E.; Finn, M. G.; Siuzdak, G., Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Analytical Chemistry 2001, 73 (3), 612-619.
101. Tuomikoski, S.; Huikko, K.; Grigoras, K.; Ostman, P.; Kostiainen, R.; Baumann, M.; Abian, J.; Kotiaho, T.; Franssila, S., Preparation of porous n-type silicon sample plates for desorption/ionization on silicon mass spectrometry (DIOS-MS). Lab Chip 2002, 2 (4), 247-253.
102. Liu, Q.; He, L., Quantitative Study of Solvent and Surface Effects on Analyte Ionization in Desorption Ionization on Silicon (DIOS) Mass Spectrometry. Journal of The American Society for Mass Spectrometry 2008, 19 (1), 8-13.
103. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp.: Eden Prairie, 1992.
104. Kruse, R. A.; Li, X. L.; Bohn, P. W.; Sweedler, J. V., Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Analytical Chemistry 2001, 73 (15), 3639-3645.
105. Gaberc-Porekar, V.; Menart, V., Perspectives of immobilized-metal affinity chromatography. J Biochem Bioph Meth 2001, 49 (1-3), 335-360.
106. Nieba, L.; NiebaAxmann, S. E.; Persson, A.; Hamalainen, M.; Edebratt, F.; Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, A. F.; Pluckthun, A., BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem 1997, 252.
107. Ueda, E. K.; Gout, P. W.; Morganti, L., Current and prospective applications of metal ion-protein binding. J Chromatogr A 2003, 988 (1), 1-23.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2011-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明