博碩士論文 983204046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.119.143.253
姓名 游婉君(Wan-Chun Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究
(Purification, Depletion, and Characterization of Cancer Stem Cells in Colon Cancer Cells and Tissues Cultured Under Several Conditions)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前的醫學化療法可以消滅大部分癌細胞卻無法完全杜絕及防止癌症再復發而導致癌症病患的死亡率居高不下。這是由於在腫瘤中有一小群細胞具有生長,分化及自我更新的能力,稱為癌幹細胞,癌幹細胞具有很強的抗藥性。在全球統計上,大腸直腸癌位居第二大死因,且一半以上的病人在五年內死於其併發症。癌幹細胞被認為是腫瘤再復發的主要原因,因此癌幹細胞的純化及標定將有助於開發新的癌症診斷及治療法。然而目前為止並沒有專一性高且可信賴的癌幹細胞表面標定物可以標定癌幹細胞。
本研究利用人類大腸癌細胞株LoVo及大腸直腸癌病患的初期癌細胞為研究對象,藉由多種方法去純化,剔除及鑑定癌幹細胞。第一、利用無血清培養法純化癌幹細胞,第二、利用抗癌藥篩選癌幹細胞,第三、培養腫瘤細胞在生物材料 (pluronic immobilized plate) 上以純化或剔除癌幹細胞,第四、以傳統的磁珠分離法分離癌幹細胞,CD133和CD44目前較著名被假定為是癌幹細胞的表面標定物。最後以動物實驗法來驗證其致瘤性。癌幹細胞與多能性基因(Nanog, Oct4, Sox2)的關係也將被討論。
本研究結果顯示LoVo癌細胞在含有血清條件下培養10天比在無血清條件下培養10天更具有致瘤性,且LoVo癌細胞的致瘤性隨著培養時間增長而變強。細胞間的訊號傳遞被認為是致瘤性增強的主要原因,這假設我們命名為Class Leader Theory。癌幹細胞與細胞多能性並無直接關係。CD133+與CD133-皆可以在老鼠皮下形成腫瘤,而CD44+與CD44-皆不具致瘤力。我們認為藉由假定的腫瘤幹細胞標記物,亦即CD133及CD44,無法專一地標定腫瘤幹細胞,動物實驗法是目前唯一可以鑑定癌幹細胞的方法。
純化及標定腫瘤幹細胞一直以來都是很大的挑戰,然而在本研究中,藉由LoVo細胞培養在生醫材料(pluronic immobilized plate)上,我們成功的剔除LoVo癌細胞中絕大部分的癌幹細胞,這一發現將可在臨床應用上具有貢獻。
摘要(英) Patient always died of cancer after the failure of current therapies to eradicate the residue disease. It was thought that there is a subpopulation of cancer cells that has the ability of initiating the tumor relapse, termed tumor initiating cells or cancer stem cells. Colorectal carcinoma is the second leading cause of cancer death in the world. The caner stem cells (CSCs) appear able to fuel the growth of diverse tumors. The characterization of CSCs will help to devise novel diagnostic and therapy procedure. Cancer stem cells are seemed to be chemoresistant cells. However there are no validating cancer stem cell markers that can specifically identify the cancer stem cells until now.
The goal of this study is to purify, deplete and characterize the cancer stem cells in LoVo colon cancer cell lines and colon cancer patient specimens by several method such as cultivation under serum and serum-free conditions, isolation of the chemoresistant cells by anti-cancer drugs, and isolation by the culture on CDI-pluronic immobilized plates. The cells were compared to the cell isolated by traditional MACs-sorted method based on the putative surface markers of CSCs (i.e., CD44, and CD133). The tumorigenic ability was finally analyzed in in vivo bioassay. The pluripotent genes expression (i.e., Nanog, Oct4, and Sox2 ) through these conditioned cells were also discussed.
The results indicated that the LoVo cells cultivated under serum condition for 10 days have a higher tumorigenic ability than that cultivated for 1 day and that in the serum-free conditions. The cell-cell communication should be the major element to generate the tumor-initiation cells (cancer stem cells) among the tumor cells; this hypothesis is termed “class leader theory” in this study. There was no directly relationship between the cancer stem cells and the gene expression of pluripotency.
In this study, it was found that both CD133+ and CD133- cells could give rise to the
tumors in vivo whereas both CD44+ and CD44- could not generate the tumors in vivo. There is no validation of cancer stem cells markers that can specifically target at cancer stem cells. The only method to evaluate the cancer stem cells should be the direct in vivo bioassay.
To identify the cancer stem cells remains a big challenge. However, the most of the cancer stem cells were successively removed in LoVo colon cancer cells by cultivation of the LoVo cells on the pluronic immobilized plate. This could provide a great hope and implication in the clinical application.
關鍵字(中) ★ 癌
★ 癌幹細胞
★ 抗藥性
★ 多能性
★ 致瘤性
關鍵字(英) ★ clonogenity
★ cancer stem cell
★ cancer
★ tumorigenity
★ pluripotent
★ chemoresistant
論文目次 摘要 I
Abstract II
誌謝 IV
Acknowledgments V
Table of Contents VI
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1-1 The relationship between stem cells and cancer stem cells 1
1-1-1 Stem cells 1
1-1-2 Cancers and Cancer stem cells 2
1-1-3 Identity of cancer stem cells 4
1-1-4 Implications of cancer stem cells 8
1-2 Analysis of CSCs by flow cytometry 10
1-3 Isolation of CSCs by magnetic-activated cell sorting (MACs) 12
1-4 Purification of stem on biomaterials having nano-segment 13
1-5 ELISA for CEA (carcinoembryonic antigen) 15
1-6 in vivo tumorigenic assay 17
1-7 Polymerase Chain Reaction (PCR) 17
1-7-1 Introduction of PCR 17
1-7-2 The procedure of PCR 18
1-7-3 Selection of primers 21
1-8 Immunofluorescent staining (IF) 23
1-9 Immunohistological staining (IHC) 24
Chapter 2 Materials and Methods 26
2-1 Cell lines and patient specimens 26
2-2 Cell culture condition 27
2-3 Preparation of chemotherapeutic agents 28
2-4 Preparation of buffer solution 29
2-5 Preparation of CDI activated pluronic Poly-L-lysine plate 29
2-6 X-ray photoelectron spectra (XPS) 30
2-7 Water contact angle 30
2-8 In vitro chemotherapy 31
2-9 CEA production analysis 31
2-10 Flow cytometry 33
2-11 MACs sorting method 33
2-12 Isolation of RNA and RT-PCR 35
2-12-1 Isolation of RNA 35
2-12-2 Single-strand cDNA synthesis 35
2-12-3 PCR (Polymerase Chain Reaction) steps 36
2-13 In vivo tumor challenge 38
2-14 Immunofluorescence 39
2-15 Immunohistochemistry 40
Chapter 3 Results and Discussion 42
3-1 Physical characteristics of CDI activated Pluronic poly-L-lysine plates 42
3-2 Morphology of LoVo colon cancer cells and primary cells cultivated under several conditions 47
3-2-1 The effect of serum on cell morphology 47
3-2-2 The effect of chemotherapy on cell morphology 48
3-2-3 The effect of the microenvironment on the cell morphology 58
3-3 The CEA production of LoVo cells under anti-cancer drug treatment 62
3-4 Characterization of purified cancer stem cells (CSC) 70
3-4-1 Putative cancer stem cell markers analyzed by flow cytometry 70
3-4-2 In vivo tumorigenic bioassay 76
3-4-3 Putative cancer stem cell markers and pluripotent genes analyzed by immunofluorescence staining
and RT-PCR 83
3-4-4 Pluripotent gene expression of purified cancer stem cells analyzed by RT-PCR 96
Chapter 4 Conclusion 100
Supplementary data 102
Reference 105
參考文獻 Reference
[1] Tannishtha Reya, Sean J. Morrison, Michael F. Clarke & Irving L. Weissman, “Stem cells, cancer, and cancer stem cell”, Nature, Vol. 414, pp. 105-111, 2001.
[2] Neethan A. Lobo, Yohei Shimono, Dalong Qian, and Michael F. Clarke, “The biology of Cancer Stem Cells”, Auun. Rev. Cell Dev. Biol, Vol. 23, pp. 675-699, 2007.
[3] Wei Guo, Josephl. Lasky III, and Hong Wu, ”Cancer stem cell”, Pediatr Res, Vol. 59, pp. 59-64, 2006.
[4] Michael F. Clarke, and Margaret Fuller, “Stem Cells and Cancer : Two Faces of Eve”, Cell, Vol. 124, pp.1111-1115, 2006.
[5] Thomas Klonisch, Emilia Wiechec, Scabine Hombach-Klonisch, Scduharsana R. Ande, Sebastian Wesselborg, Klaus Schulze-Osthoff and Marek Los., “Cancer stem cell markers in common cancers – therapeutic implications”, Cell press, Vol. 14, pp. 450-460, 2008.
[6] Hombach-Klonisch, S. et al., “ Adult stem cells and their trans-differentiation potential – perspectives and therapeutic applications”, J. Mol Med., Vol. 86, pp. 1301-1314, 2008.
[7] Dewey M.J., Martin D.W, Martin G.R., Mintz B., ” Mosaic mice with teratocarcinoma - derived mutant cells deficient in hypoxanthine phosphoribosyltransferase”, Proc Natl Acad Sci, Vol. 74, pp. 5564-5568, 1997.
[8] Evans M.J., Kaufman M.H., “Establishment in culture of pluripotential cells from mouse embryos”, Nature, Vol. 292, pp. 154-156, 1981.
[9] Martin G.R., “Teratocarcinomas as a model system for the study of embryogenesis and neoplasia”, Cell, Vol.5, pp. 229-243, 1975.
[10] Akashi, K. and Weissman, I.L., “Developmental biology of haematopoietic stem cell”, Oxford Univ. Press, pp. 15-34, 2001.
[11] Weissman I.L., “Stem cells : units of development, units of regeneration, and units in evolution”, Cell, Vol.100, pp. 157-168, 2000.
[12] Spangrude, G.J., Heimfeld, S. and Weissman, I.L., “Purification and characterization of mouse hematopoietic stem cells”, Science, Vol. 241, pp. 58-62, 1988.
[13] Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M. and Peault, B., “Isolation of a candidate human hematopoietic stem-cell population”, Proc. Natl. Acad. Sci, Vol. 89, pp. 2804-2808, 1992.
[14] Piero Dalerba, Robert W. Cho, and Michael F. Clarke., “Cancer Stem Cells: Models and Concepts”, Annu. Rev. Med., Vol. 58, pp. 267-284, 2007.
[15] Bonnet, D. & Dick, J.E., “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell”, Nature Med., Vol. 3, pp. 730-737, 1990.
[16] Ricardo Pardal ,Michael F. Clarke and Sean J. Morrison, “Applying the properties of stem-cell biology to cancer”, Nature reviews, Vol. 3, pp. 895-902, December 2003.
[17] Spira, A., Ettinger, D.S., “Multidisciplinary management of lung cancer”, N. Engl. J. Med., Vol. 350, pp. 379–392, 2004.
[18] Hsu, H.S., Wen, C.K., Tang, Y.A., Lin, R.K, Li, W.Y., et al., ” Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer”, Clin. Cancer Res., Vol. 11, pp. 5410–5416, 2005.
[19] Chen, Y., Hsu, H.H., Chen, Y.W., et al., “Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells”, PLoS ONE, Vol. 3, e2637, 2008.
[20] Socinski, M.A., Bogart, J.A., “Limited-stage small-cell lung cancer: the current status of combined-modality therapy”, J. Clin. Oncol., Vol. 25, pp. 4137–4145, 2007.
[21] Bernstein, E.D., Herbert, S.M., Hanna, N.H., “Chemotherapy and radiotherapy in the treatment of resectable non-small-cell lung cancer”, Ann. Surg. Oncol., Vol. 13, pp. 291–301, 2006.
[22] Lam, W.K., Watkins, D.N., “Lung cancer: future directions”, Respirology, Vol. 12, pp. 471–477, 2007.
[23] Ricci-Vitiani, L, Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M. et al.,” Identification and expansion of human colon‐cancer‐initiating cells”, Nature, Vol. 445, pp. 111, 2007.
[24] Jemal, A. et al., “Cancer statistics”, Cancer J. Clinic. Vol. 56, pp. 106–130, 2006.
[25] Al-Hajj M, Wicha M.S., Benito-Hernandez Morrison S.J., Clarke M.F., “Prospective identification of tumorigenic breast cancer cells”, Proc. Natl. Acad. Sci, Vol. 100, pp. 3983-3988, 2003.
[26] Singh, S.K., Clarke, I.D., Terasaki, M., et al., ”Identification of a cancer stem cell in human brain tumors”, Cancer Research, Vol. 63, pp. 5821-5828, 2003.
[27] Richardson, G.D., Robson, C.N., Lang, S.H., et al., “CD133, a novel marker for human prostatic epithelial stem cells”, J. Cell Sci., Vol. 117, pp. 3539-3545, 2004.
[28] Xin,L., Lawson, D.A., Witte, O.N., “The Sca-1 cell surface marker enriches for a prostateregenerating cell subpopulation that can initiate prostate tumorigenesis”, Proc. Natl. Acad. Sci., Vol. 102, pp. 6942-6947, 2005.
[29] Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M.R., Kemper, K., Perez Alea, M., Richel, D.J., Stassi G., Medema, J.P., “Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity”, Proc. Natl. Acad. Sci.”, Vol. 105, pp. 13427-13432. 2008.
[30] Yin, A.H., Miraglia, S; Zanjani, E.D., Almeida-Porada, G, Ogawa, M., et al., “AC133, a novel marker for human hematopoietic stem and progenitor cells”, Blood, Vol. 90, pp. 5002-5012, 1997.
[31] O’Brien C.A., Pollett A., Gallinger S., Dick J.E., “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice”, Nature, Vol. 445, pp. 106–110, 2007.
[32] Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., et al., “Identification of human brain tumour initiating cells”, Nature, Vol. 432, pp. 396–401, 2004.
[33] Hilbe, W., Dirnhofer, S., Oberwasserlechner, F., “CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer”, J. Clin. Pathol., Vol. 57, pp. 965-969, 2004.
[34] Eramo, A., et al., “Identification and expansion of the tumorigenic lung cancer stem cell population”, Cell Death Differ., Vol. 15, pp. 504–514, 2008
[35] Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., et al., “A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo”, Nature, Vol. 345, pp. 686-692, 1990.
[36] Burdon, T., Smith, A., Savatier, P., Signalling, “cell cycle and pluripotency in embryonic stem cells”, Trends Cell Biol., Vol. 12, pp. 432-438, 2002.
[37] Boiani, M., Scholer, H.R., “Regulatory networks in embryo-derived pluripotent stem cells”, Nat. Rev. Mol. Cell Biol., Vol. 6, pp. 872-884, 2005.
[38] Higuchi, A., Chen, W.Y., Yamamoto, T., Gomei, Y., Fukushima, H., Chang, Y., Ruaan, R., “Preservation of hematopoietic stem and progenitor cells from umbilical cord blood stored in a surface derivatized with polymer nano-segments”, Biomacromolecules, Vol. 9, pp. 634-639, 2008.
[39] Lamb, K.A., Rizzino, A., “Effects of differentiation on the transcriptional regulation of the FGF-4 gene: critical roles played by a distal enhancer”, Mol. Reprod. Dev., Vol. 51, pp. 218-224, 1998.
[40] Kraft, H.J., Mosselman, S., et al., “Oct-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells”, J. Biol. Chem., Vol. 271, pp. 12873-12878, 1996.
[41] Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., et al., “Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4”, Cell, Vol. 95, pp. 379-391, 1998.
[42] Goodell M.A., Brose K., Paradis G., Conner A.S., Mulligan R.C., “ Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo”, J. Exp. Med., Vol. 183, pp. 1797-1806, 1996.
[43] Chiasson B.J., Tropepe V., Morshead C.M., van der Kooy D., “ Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferation potential, but only subependymal cells have neural stem cell characteristics”, J. Neurosci, Vol. 19, pp. 4462-4471, 1999.
[44] Seaberg RM., Van der Kooy D., “ Stem and progenitor cells : the premature desertion of rigorous definitions”, Trends Neurosci, Vol. 26, pp. 125-131, 2003.
[45] Grem J.L., “Fluoropyrimidines. In: Chabner BA, Longo DL, eds. Cancer Chemotherapy and Biotherapy: Principles and Practice”, 2nd ed. Philadelphia: Lippincot William and Wilkins, pp. 149-63, 1996.
[46] Francini G., Petrioli R., Lorenzini L., Mancini S., Armenio S., Tanzini G., Marsili S., Aquino A., Marzocca G., Civitelli S., et al., “Folinic acid and 5-fluorouracil as adjuvant chemotherapy in colon cancer”, Gastroenterology, Vol. 106, pp. 899-906, 1994.
[47] O’Connell M.J, Laurie J.A, Kahn M., Fitzgibbons Jr R.J., Erlichman C., Shepherd L., Moertel C.G., Kocha W.I., Pazdur R., Wieand H.S., Rubin J., Vukov A.M., Donohue J.H., Krook J.E., Figueredo A., “Prospectively randomized trial of postoperative adjuvant chemotherapy inpatients with high-risk colon cancer”, J. Clin. Oncol., Vol. 16, pp. 295-300, 1998.
[48] Skibber J.M., Minsky B.D., Hoff P.M., Cancer of the colon. In: De Vita V., Hellman S., Rosenberg S.A., eds., “Cancer Principles and Practice of Oncology”, 6th ed. Philadelphia: Lippincott Williams and Wilkins, pp.1216-71, (USA CH 33.7), 2001.
[49] Von Hoff D.D., “Promising New agents for treatment of patients with colorectal cancer”, Semin Oncol. Vol. 5, pp. 47-52, 1998
[50] Bin-Bing S., Zhou, Haiying Zhang, Marc Damelin, Kenneth G., Geles, Justin C., Grindley and Peter B., Dirks, “Tumour-initiating cells : challenges and opportunities for anticancer drug discovery”, Nature reviews, Vol. 8, pp. 806-823, 2009.
[51] Alice Longobardi Givan, “Flow Cytometry: First Principles”, Wiley-Liss, New York ISBN 0-471-56095-2 [Paperback], 1992.
[52] http://en.wikipedia.org/wiki/
[53] http://www.semrock.com/flow-cytometry.aspx
[54] Kato K., Radbruch A., “Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting”, Cytometry, Vol. 14, pp. 384-392, 1993.
[55] Miltenyi S., Müller W., Weichel W., Radbruch A., “High-gradient magnetic cell separation with MACS”, Cytometry, Vol. 11, pp. 231-238, 1990.
[56] Hsin-Ling, Hsieh, “Evaluation of Anti-cancer Drugs for Colon Cancers by Analyzing the Population of Cancer Stem Cells”, Master thesis, 2010.
[57] http://www.miltenyibiotec.com/en/NN_736_MACS_Cell_Separation_the_principle_1.aspx#2
[58] Li, C., Heidt, D.G., Dalerba, P., et al., “Identification of pancreatic cancer stem cells”, Cancer Research, Vol. 67, pp. 1030-1037, 2007.
[59] Akhilesh Banerjee, Manish Arha, Soumitra Choudhary, Randolph S. Ashton, Surita R., Bhatia, David V., Schaffer, Ravi S., Kane, ” The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells”, Biomaterials, Vol. 30, pp. 4695-4699, 2009.
[60] Higuchi A., Aoki Nobuo, Yamamoto Taro, Gomei Yumiko, Egashira Satsuki, Matsuoka Yuki, Mitazaki Toyohiko, Fukushima Hisashi, Jyujyoji Shin, and Natori Shizue H., “ Bioinert surface of pluronic – immobilized flask for preservation of Hematopoietic stem cells”, Biomacromolecules, Vol. 7, pp. 1083-1089, 2006.
[61] Higuchi Akon, Aoki Nobuo, Yamamoto Taro, Mitazaki Toyohiko, Fukushima Hisashi, Tak Tae Moon, Jyujyoji Shin, Egashira Satsuki, Matsuoka Yuki, Natori Shizue H., “Temperature – induced cell detachment on immobilized pluronic surface”, J. Biomed. Mater. Res., Vol. 79A, pp. 380-392, 2006.
[62] Anamelechi C.C., Truskey G.A., Reichert W.M., “Mylar (TM) and Teflon-AF (TM) as cell culture substrates for studying endothelial cell adhesion”, Biomaterials, Vol. 26, pp. 6887-6896, 2005.
[63] Dankers P.Y.W., Harmsen M.C., Brouwer L.A., Van Luyn M.J.A., Meijer E.W., “A modular and supramolecular approach to bioactive scaffolds for tissue engineering”, Nat. Mater., Vol. 4, pp. 568-574, 2005.
[64] Lee M., Dunn J.C.Y., Wu B.M., “Scaffold fabrication by indirect three-dimensional printing”, Biomaterials, Vol. 26, pp. 4281-4289, 2005.
[65] Butler, J.E., T.L., Feldbush, P.L., McGivern, and Stewart, N., “The enzyme-linked immunosorbent assay (ELISA): a measure of antibody concentration or affinity? “, Immunochemistry, Vol. 15 pp. 131-136, 1978.
[66] Carlsson, H.E., Hurvell B., and Lindberg A.A., ” Enzyme-linked immunosorbent assay (ELISA) for titration of antibodies against Brucella abortis and Yersinia enterocolitica”, Acta Pathol. Microbiol. Scand. Sect. C” Vol. 84, pp. 168-176.1976
[67] Engvall, E., Jonsson K., and Perlman P., “Enzyme- linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labeled antigen and antibody-coated tubes”, Biochim. Biophys. Acta, Vol. 251, pp. 427-434, 1971
[68] Engvall, E., and Perlmann, P., “Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G”, Immunochemistry, Vol. pp. 871-874, 1971
[69] David F., Keren, “Enzyme-Linked Immunosorbent Assay for Immunoglobulin G and Immnunoglobulin A Antibodies to Shigella flexneri Antigens”, infection and immunity, Vol. 24, pp. 441-448, 1979.
[70] Higuchi A., Uchiyama Shigeru, Demura Makoto, Asakura Tetsuo, Cho Chong-Su, Akaike Toshihiro, Takarada Hirokazu and Hara Mariko, “Enhanced CEA production associated with aspirin in a culture of CW-2 cells on some polymeric films” , Cytotechnology, Vol. 31, pp. 233–242, 1999.
[71] Manoussos M., Konstadoulakis, Konstantinos N., Syrigos, Costas Albanopoulos, George Mayers and Basil Golematis, “The presence of anti-carcinoembryonic antigen (CEA) antibodies in the sera of patients with gastrointestinal malignancies”, Journal of Clinical Immunology, Vol. 14, pp. 310-313, 1994.
[72] Mekler V.M., and Bystryaka S.M., “Application of o-phenylenediamine as a fluorogenic substrate in peroxidase-mediated enzyme-linked immunosorbent assay”, Analytica Chimica Acta., Vol. 264, pp. 359-363, 1992.
[73] Ricci-Vitiani L., Lombardi D.G., Pilozzi E., Biffoni M., Todaro M., Peschle C. and De Maria R., “Identification and expansion of human colon-cancer-initiating cells”, Nature, Vol. 445, pp. 111–115, 2007.
[74] Ieta K., Tanaka F., Haraguchi N., et al., “Biological and genetic characteristics of tumor-initiating cells in colon cancer”, Ann. Surg. Oncol., Vol. 15, pp. 638–648, 2008.
[75] Sergey V., Shmelkov, Jason M., Butler, Andrea T., Hooper, Adilia Hormigo, Jared Kushner, Till Milde, Ryan St. Clair, Muhamed Baljevic, Ian White, David K. Jin, Amy Chadburn, Andrew J. Murphy, David M. Valenzuela, Nicholas W. Gale, Gavin Thurston, George D. Yancopoulos, Michael D’Angelica, Nancy Kemeny, David Lyden, and Shahin Rafii, “CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors”, J. Clin. Invest., Vol. 118, pp. 2111–2120, 2008.
[76] Claudia Dittfeld, Antje Dietrich, Susann Peickert, Sandra Hering, Michael Baumann, Marian Grade, Thomas Riedf, Leoni A., Kunz-Schughart, “CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116”, Radiotherapy and Oncology, Vol. 94, pp. 375–383, 2010.
[77] Zhen Fan Yang, Patricia Ngai, David W. Ho, Wan Ching Yu, Michael N.P. Ng, Chi Keung Lau, Mandy L.Y. Li, Ka Ho Tam, Chi Tat Lam, Ronnie T.P. Poon, Sheung Tat Fan, “Identification of local and circulating cancer stem cells in human liver cancer”, Hepatology, Vol. 47, pp. 919-928, 2008.
[78] Mullis, K., Faloona F., Scharf S., Saiki R., Horn G. and Erlich H., “Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction”, Cold Spring Harbor Symp. Quant. Biol., Vol. 51, pp. 263-273, 1986.
[79] Mullis, K.B., Ferré, F. and Gibbs, R.A., “The Polymerase Chain Reaction”, Birkhäuser, Boston, Massachusetts., Vol. 11 No. 6, 1995.
[80] Bartlett and Stirling, “A Short History of the Polymerase Chain Reaction”, Methods Mol. Biol., Vol. 226, pp.3-6, 2003.
[81] Pavlov A.R., Pavlova N.V., Kozyavkin S.A., Slesarev A.I., ” Recent developments in the optimization of thermostable DNA polymerases for efficient applications”, Trends Biotechnol, Vol. 5, pp. 253–260, 2004.
[82] Rychlik W., Spencer W.J., Rhoads R.E., "Optimization of the annealing temperature for DNA amplification in vitro”, Nucl. Acids. Res., Vol. 21, pp. 6409–6412, 1990.
[83] Thweatt R., Goldstein S. and Reis R.J.S., “A universal primer mixture for sequence determination at the 3' ends of cDNAs”, Analytical Biochemistry, Vol. 190, pp. 314-316. 1990.
[84] Krawetz S.A., Pon R.T. and Dixon G.H., “Increased efficiency of the Taq polymerase catalysed polymerase chain reaction”, Nucleic Acids Research, Vol.17, pp. 819, 1989.
[85] Sarkar G., Kapeiner S. and Sommer S.S., “Formaqmide can drrastically increase the specificity of PCR”, Nucleic Acids Research, Vol. 18, pp. 7465, 1990.
[86] IWu D.Y., Ugozzoli L., Pal B.K., Qian J., Wallace R.B., “The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction”, DNA and Cell Biology, Vol. 10, pp. 233-238, 1991.
[87] Yap E.P.H. and McGee J.O.D, “Short PCR product yields improved by lower denaturation temperatures”, Nucleic Acids Research, Vol. 19, pp. 1713, 1991.
[88] Bhardwaj, G. et al., “Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation”, Nature Immunol., Vol. 2, pp. 172–180 (2001).
[89] Costello R.T., Mallet F., Gaugler B., Sainty D., Arnoulet C., Gastaut J.A., Olive D., “Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities”, Cancer Res., Vol. 60, pp. 4403-4411, 2000.
[90] Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., Hoey, T., Gurney, A., Huang, E.H., Simeone, D.M., Shelton, A.A., Parmiani, G., Castelli, C., Clarke, M.F., “ Phenotypic characterization of human colorectal cancer stem cells”, Proc. Natl. Acad. Sci., Vol. 104, pp. 10158-10163, 2007
[91] Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., Jin, H., Cahuzac, N., Mehrpour, M., Lu, Y., Chen, Q., “CD44 is of functional importance for colorectal cancer stem cells”, Clin. Cancer Res., Vol. 14, pp, 6751-6760, 2008.
[92] Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., Rich, J.N., “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor”, Cancer Res., Vol. 66, pp. 7843-7848, 2006.
[93] Bruno, S., Bussolati, B., Grange, C., Collino, F., Graziano, M.E., Ferrando, U., Camussi, G., “CD133+ renal progenitor cells contribute to tumor angiogenesis”, Am. J. Pathol. Vol. 169, pp. 2223-2235, 2006.
[94] Zhu, L., Gibson, P., Currle, D.S., Tong, Y., Richardson, R.J., Bayazitov, I.T., Poppleton, H., Zakharenko, S., Ellison, D.W., Gilbertson, R.J.” Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation”, Nature, Vol. 457, pp. 603-607, 2009.
[95] Yoshikawa, R., Nakano, Y., Tao, L., Koishi, K., Matsumoto, T., Sasako, M., Tsujimura, T., Hashimoto-Tamaoki, T., Fujiwara, Y.’ Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy”, Br. J. Cancer, Vol. 98, pp. 1670-1674, 2008.
[96] Lawson, D.A. et al., “Prostate stem cells and prostate cancer”. Cold Spring Harb. Symp. Quant. Biol., Vol. 70, pp. 187–196, 2005.
[97] Collins, A.T. et al., “Prospective identification of tumorigenic prostate cancer stem cells”, Cancer Res., Vol. 65, pp. 10946–10951, 2005.
[98] Ouhtit, A. et al., “In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver”, Am. J. Pathol., Vol. 171, pp. 2033-2039, 2007.
[99] Takahashi H., Ishii H., Nishida N., Takemasa I., Mizushima T., Ikeda M., Yokobori T., Mimori K., Yamamoto H., Sekimoto M., Doki Y., Mori M., “Significance of Lgr5(+ve) cancer stem cells in the colon and rectum”, Ann. Surg. Oncol., Vol. 18, pp.1166-74, 2010.
[100] Nick Barker, Johan H. van Es, Jeroen Kuipers, Pekka Kujala, Maaike van den Born, Miranda Cozijnsen, Andrea Haegebarth, Jeroen Korving, Harry Begthel, Peter J. Peters & Hans Clevers, “Identification of stem cells in small intestine and colon by marker gene Lgr5”, Nature, Vol. 449, pp. 1003-1007, 2007.
[101] Cheong J. Lee, Joseph Dosch, Diane M. Simeone,” Pancreatic Cancer Stem Cells”, Journal of Clinical Oncology, Vol 26, pp. 2806-2812, 2008.
[102] Hurt E.M., Kawasaki B.T, Klarmann G.J., Thomas S.B. and Farrar W.L., “CD44+CD24− prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis”, British Journal of Cancer, Vol. 98, pp. 756–765, 2008.
[103] Carl Schildkraut, Shneior Lifson,” Dependence of the melting temperature of DNA on
salt concentration”, Biopolymers, Vol. 3, pp. 195-208, 1965.
[104] Coons, A.H., Creech, H.J., Jones, R.N. and Berliner, E., “The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody”, J. Immunol.,Vol. 45, pp. 159, 1942.
[105] Kr. von dem Borne A. E. G., Verheugt F. W. A., Oosterhof F., von Riesz E., Brutel de la Rivière A., Engelfriet C. P., “A Simple Immunofluorescence Test for the Detection of Platelet Antibodies”, British Journal of Haematology, Vol. 39, pp. 197-207, 1978.
[106] Sridhar Rao P.N. (http://www.microrao.com).
[107] Ramos-Vara, J.A., "Technical Aspects of Immunohistochemistry", Vet. Pathol., Vol. 42, pp. 405–426, 2005.
[108] Leader M., Patel J., Makin C., Henry K., “An analysis of the sensitivity and specificity of the cytokeratin marker CAM 5.2 for epithelial tumours. Results of a study of 203 sarcomas, 50 carcinomas and 28 malignant melanomas”, Histopathology, Vol. 10, pp. 1315-24, 1986.
[109] Adam J. Engler, Shamik Sen, H. Lee Sweeney and Dennis E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification”, Cell, Vol. 126, pp.677-689, 2006.
[110] LeeJ., Kotliarova S., KotliarovY., et al., ”Tumor stemcells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines”, Cancer Cell, Vol. 9, pp. 391-403, 2006.
[111] Bao S.,Wu Q., McLendon R.E., et al., “Glioma stemcells promote radioresistance by preferential activation of the DNA damage response”, Nature, Vol. 444, pp. 756-760, 2006.
[112] Shih-Hwa Chiou, Cheng-ChiaYu, Chi-Yang Huang, Shu-Chun Lin, Chung-Ji Liu, Tung-HuTsai, Shiu-Huey Chou, Chian-Shiu Chien, Hung-Hai Ku, andJeng-Fan Lo, “Positive Correlations of Oct-4 and Nanog in Oral Cancer Stem-Like Cells and High-Grade Oral Squamous Cell Carcinoma”, Human Cancer Biology, Vol. 14, pp. 4085-4095, 2008.
[113] Scott J. Dylla, Lucia Beviglia, In-Kyung Park, Cecile Chartier, Janak Raval, Lucy Ngan, Kellie Pickell, Jorge Aguilar, Sasha Lazetic, Stephanie Smith-Berdan, Michael F. Clarke, Tim Hoey, John Lewicki, and Austin L. Gurney, “Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy”, PLoS ONE, Vol. 3, pp.1-13, 2008.
[114] Yingjie Yu, Shailender S. Kanwar, Bhaumik B. Patel, Jyoti Nautiyal, Fazlul H. Sarkar and Adhip P.N. Majumdar, “Elimination of Colon Cancer Stem–Like Cells by the Combination of Curcumin and FOLFOX”, Translational Oncology, Vol. 2, pp. 321-328, 2009.
[115] Louis Vermeulen, Felipe De Sousa E Melo, Maartje van der Heijden, Kate Cameron, Joan H. de Jong, Tijana Borovski, Jurriaan B. Tuynman, Matilde Todaro, Christian Merz, Hans Rodermond, Martin R. Sprick, Kristel Kemper, Dick J. Richel, Giorgio Stassi and Jan Paul Medema, “Wnt activity defines colon cancer stem cells and is regulated by the microenvironment”, Nature cell biology, Vol. 12, pp. 468-477, 2010.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2011-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明