博碩士論文 983204030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.133.147.87
姓名 林子淳(Zih-Chun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 共晶化合物/鹽類其晶體固態氫鍵鍵結與其在水中溶解度之關係
(Relating the Solubility in Water of Co-crystals/Salts with Their Solid-State Hydrogen Bonding Network)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 結晶材料的物理性質主要是受到固體狀態下的分子排列所影響,更細一步說是受到分子擺放位置和彼此間的作用力所影響。而共晶和鹽類更是近年來的熱門研究議題,當中最值得深入探討的作用力即為氫鍵。
在篩選共晶/鹽類的結晶工程中,我們著重探討於產物的物理性質譬如熔化熱,溶解於水中的焓,溶解於水中的熵,和在水中的溶解度是否受到固態狀態下形成之氫鍵影響。所以說除了再重覆前人發展出一套鑒定的共晶鹽類篩選跟檢測流程,實驗室常見的分析工具,如PXRD,DSC,TGA,IR,OM,和SXD被用來了解超分子結構,並確認共晶化合物/鹽類的生成。結果共產生2:1 cytosine-fumaric acid、2:1 cytosine-acetylenedicarboxylic dihydrate的共晶化合物,和2:1cytosine-tartaric acid的鹽類化合物。在本研究中的最大特色就是提出氫鍵數的探討。
在這個實驗過程中,不同以往的是我們使用固態氫鍵數企圖解釋共晶化合物在水中的溶解度而非使用溶度積。
摘要(英) It is well-known that crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solid, and altering the placement and/or interactions between these molecules. Most studies were interested in the formation and structure of co-crystal/salt compound, the hydrogen bonding played an important role to affect physical properties.
In crystal engineering for screening co-crystals/salts, this thesis focused on relating the physical properties such as the heat of fusion, the enthalpy of dissolution, the entropy of dissolution, and the solubility in water. Common laboratory analytical tools such as PXRD, DSC, TGA, FT-IR, OM, and SXD were used to understand the supramolecular architectures and to ensure the quality of co-crystals. 2:1 co-crystal of cytosine-fumaric acid, 2:1 co-crystal of cytosine-acetylenedicarboxylic acid, and 2:1 salt of cytosine-tartaric acid were manufactured. The significance of our research is to offer concept to study the solid state hydrogen bonding.
In the experimental process, we used hydrogen bonding number in the solid-state to attempt to explain the co-crystal solubility in the liquid state, rather than using the solubility product in the liquid state to explain the co-crystal solubility in the liquid state.
關鍵字(中) ★ 共晶化合物
★ 氫鍵
★ 鹽類
關鍵字(英) ★ hydrogen bonding
★ salt
★ co-crystal
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
Chapter 1 Executive Summery 1
1.1 Introduction 1
1.2 Brief Introduction of Cytosine 5
1.3 Conceptual Framework 6
1.4 Reference 8
Chapter 2 Analytical Instruments 11
2.1 Introduction 11
2.2 Crystallography 14
2.2.1 Powder X–ray Diffraction (PXRD) 14
2.2.2 Single-Crystal X-ray Diffraction (SXD) 18
2.3 Spectroscopic Instrument 20
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy 20
2.3.2 Photoluminescence Spectroscopy (PL) 23
2.4 Thermal Analysis 25
2.4.1 Differential Scanning Calorimetry (DSC) 25
2.5 Microscopic Methods 31
2.6 Conclusions 33
2.8 References 34
Chapter 3 Solubility, Crystallinity, Crystal Habits of Cytosine by Initial Screening Procedures 37
3.1 Introduction 37
3.1.1 Solubility 39
3.1.2 Crystal Habits 40
3.1.3 Polymorphism 41
3.1.4 Crystallinity 44
3.2 Materials 44
3.2.1 Cytosine 44
3.2.2 Solvents 49
3.3.1 Initial Solvent Screening 53
3.3.1.1 Temperature Cooling Method 54
3.3.2 Instrumental Analysis 55
3.3.2.1 Powder X-ray Diffractometry (PXRD) 55
3.3.2.2 Differential Scanning Calorimetry (DSC) 55
3.3.2.3 Thermogravimetric Analysis (TGA) 56
3.3.2.4 Fourier Transform Infrared Spectroscopy (FT-IR) 56
3.3.2.5 Optical Microscopy (OM) 57
3.4 Results and Discussion 58
3.4.1 Solubility 58
3.4.2 Crystal Habits 63
3.4.3 Polymorphism 64
3.4.4 Crystallinity 67
3.6 References 69
Chapter 4 Relating the Solubility in Water of Co-crystals/Salts with Their Solid-State Hydrogen Bonding Network 73
4.1 Introduction 73
4.1.1 The Introduction of Hydrogen Bonding 75
4.1.2 The aim of co-crystal/salt comparison 78
4.1.3 Review of co-crystal/salt screening/manufacturing 79
4.2 Materials 82
4.3 Experimental Section 84
4.3.1 Screening of Cocrystal/Salt Formation 84
4.3.1.1 Co-crystal Screening by Solvent Drop Grinding 84
4.3.1.2 Co-crystal Screening by Differential Scanning Calorimetry (DSC) 84
4.3.2 Manufacturing of Co-crystal /Salt 85
4.3.3 Analytical Instruments 86
4.3.3.1 Optical Microscopy (OM) 86
4.3.3.2 Powder X-ray Diffractometry (PXRD) 86
4.3.3.3 Fourier Transform Infrared (FT-IR) Spectroscopy 87
4.3.3.4 Differential Scanning Calorimetry (DSC) 88
4.3.3.5 Thermal Gravimetric Analysis (TGA) 89
4.3.3.6 Single-Crystal- X-Ray Diffraction (SXD) (Hydrogen Bonding Network) 89
4.3.4 The Solubility test for Co-crystal/Salt 90
4.4 Results and Discussions 91
4.4.1 Screening Results 91
4.4.2 Characterization 95
4.4.2.1 Optical Microscopy (OM) 96
4.4.2.2 Powder X-Ray Diffraction (PXRD) 97
4.4.2.3 Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) 97
4.4.2.5 Single Crystal X-ray Diffraction (SXD) 107
4.4.3 Solubility Study 125
4.4.3.1 Solubility Determination 125
4.4.3.2 Phase Solubility Diagram (PSD) 129
4.5 Conclusions 134
4.6 Reference 135
Chapter 5 Conclusions and Future Works 141
List of Tables
Table 2.1 Summary on the characterization capacities of the analytical apparatuses 13
Table 3.1 23 kinds of solvents in our experiments. 50
Table 3.2 Form space of cytosine, the solvents were arranged by Hildebrand values. 59
Table 3.3 Molar enthalpy and entropy of dissolution of cytosine in different solvents. 63
Table 3.4 The enthalpy of melting and crystallinity of cytosine crystals by temperature cooling in 2 kinds of good solvents. 67
Table 4.1 The information of the chemicals. 83
Table 4.2 IR assignments of cytosine, dicarboxylic acids, and co-crystals of cytosine with dicarboxylic acids. 107
Table 4.3 Crystallographic data of co-crystals/salts 113
List of Figures
Figure 1.1 Schematic map of the common solid forms and their respected compounds. 3
Figure 1.2 The molecular structure of anhydrous cytosine. 6
Figure 2.1 Diffraction of Bragg’s Law. 15
Figure 2.2 A Bruker Axs D8 Advance PXRD. 17
Figure 2.3 Schematic representation of a four-circle diffractometer. 19
Figure 2.4 A Siemens SMART CCD-based X-ray diffractometer equipped with Oxford Cryosystems low temperature device. 20
Figure 2.5 A Perkin Elmer Spectrum One FT-IR spectrometer (Perkin Elmer, New York, USA). 22
Figure 2.6 A Perkin Elmer Spectrum One FT-IR spectrometer (Perkin Elmer, New York, USA). 22
Figure 2.7 Schematic illustration of luminescence processes. 24
Figure 2.8 Perkin Elmer LS-55 Fluorescence spectrometer. 25
Figure 2.9 Schematic diagram of a DSC. The triangles are amplifiers that determine the difference in the two input signals. The sample heater power is adjusted to keep the sample and the reference at the same temperature during the DSC scan. 27
Figure 2.10 (a) Heat flux DSC, (b) power-compensated DSC (S = Sample pan; R = Reference pan). 28
Figure 2.11 A Perkin Elmer DSC 7 differential scanning calorimeter. 28
Figure 2.12 A Perkin Elmer TGA 7 thermogravimetric analyzer. 30
Figure 2.13 Light paths of the optical microscopy 32
Figure 2.14 Olympus SZII (Tokyo, Japan) optical microscopy. 32
Figure 3.1 Typical solubility curve and a cooling crystallization path from A to D. 40
Figure 3.2 Solubility diagram for enantiotropic polymorphism. Form I was the stable form below the transition temperature, while Form II was the metastable one. Above the transition point (Ttr), Form I became metastable, while Form II became stable. 42
Figure 3.3 Solubility diagram for monotropic polymorphism. Form I was considered the thermodynamically stable polymorph, while Form II was the kinetically stable (metastable) polymorph. 43
Figure 3.4 The molecular structure of anhydrous cytosine. 45
Figure 3.5 The structure (a) cytidine is the nucleoside of cytosine in RNA and (b) deoxycytidylate is the nucleotide of cytosine in DNA. 46
Figure 3.6 (a) The Watson-Crick base pair, cytosine forms three hydrogen bonds with guanine and (b) the Hoogsteen base pair, thymine forms two hydrogen bonds with adenine. 46
Figure 3.7 Cytosine has two tautomeric forms, the amino form and imino form. 47
Figure 3.8 (a) TGA data and (b) DSC thermogram at a heating rate of 10oC/min of the purchased cytosine for use test. 48
Figure 3.9 The recrystallization of cytosine by temperature cooling. 54
Figure 3.10 Solubility curve of cytosine in the good solvents (a) water, and (b) DMSO 60
Figure 3.11 The Van’t Hoff plots of the solubility values of cytosine in 2 different kinds of good solvents (a) DMSO, and (b) water. 63
Figure 3.12 OM images of cytosine monohydrate solids grown from water. 64
Figure 3.13 (a) TGA data and (b) DSC thermogram of cytosine monohydrate re-crystallized from water by cooling. 65
Figure 3.14 The PXRD patterns of (a) cytosine monohydrate, and (b) the purchased cytosine. 66
Figure 3.15 The FT-IR spectra of (a) the cytosine monohydrate and (b) the purchased cytosine . 66
Figure 4.1 Different types of hydrogen bridges. (a) Normal hydrogen bond with one acceptor, (b) Bifurcated hydrogen bond, and (c) Trifurcated hydrogen bond. d is the distance of H atom to A atom. 77
Figure 4.2 Molecular Structures of (a) cytosine, (b) fumaric acid, (c) succinic acid, (d) l-tartaric acid, (e) d-tartaric acid 83
Figure 4.3 PXRD patterns of (a) cytosine, (b) fumaric acid, (c) water-drop ground mixture of cytosine and fumaric acid where indicates the new appearing diffraction peak, and (d) solution crystallized co-crystal of CymFuAn. (* represented the new peak relative to the starting materials.) 93
Figure 4.4 PXRD patterns of (a) cytosine, (b) succinic acid, (c) water-drop ground mixture of cytosine and succinic acid where indicates the new appearing diffraction peak, and (d) solution crystallized co-crystal of CymSuAn. (* represented the new peak relative to the starting materials.) 93
Figure 4.5 PXRD patterns of (a) cytosine, (b) acetylenedicarboxylic acid, (c) water-drop ground mixture of cytosine and acetylenedicarboxylic acid where indicates the new appearing diffraction peak, and (d) solution crystallized co-crystal of CymAcAn (* represented the new peak relative to the starting materials.) 94
Figure 4.6 PXRD patterns of (a) cytosine, (b) l-tartaric acid, (c) solution crystallized co-crystal of CymLTAn (* represented the new peak relative to the starting materials.) 94
Figure 4.7 PXRD patterns of (a) cytosine, (b) d-tartaric acid, (d) solution crystallized co-crystal of CymDTAn (* represented the new peak relative to the starting materials.) 95
Figure 4.8 The optical micrographs of the co-crystal/salt of (a) CymFuAn, (b) CmSuAn, (c) CmAcAn, (d) CymLTAn, (e) CymDTAn, and (f) cytosine monohydrate. 97
Figure 4.9 (a) TGA and (b) DSC scans of solution crystallized co-crystal of CymFuAn 99
Figure 4.10 (a) TGA and (b) DSC scans of solution crystallized co-crystal of CymSuAn 99
Figure 4.11 (a) TGA and (b) DSC scans of solution crystallized salt of Cy2AcA1•2H2O 100
Figure 4.12 (a) TGA and (b) DSC scans of solution crystallized salt of Cy2LTA1•H2O 100
Figure 4.13 (a) TGA and (b) DSC scans of solution crystallized salt of Cy2DTA1•H2O 101
Figure 4.14 Effect of X1-N-H … O-X2 hydrogen bonding on X~O bond lengths. The quantity Δd/d0 is the difference between the donor X1-N and and the acceptor O-X2 bond length (d0 = value for fragments free of hydrogen bonding; ■: the co-crystal of Cy2FuA1; •: the co-crystal of Cy2SuA1; ▲: the co-crystal of Cy2AcA1.2H2O; ▼: the salt of Cy2LTA1.H2O; ◄: the salt of Cy2DTA1.H2O 103
Figure 4.15 Effect of X1-C-H … O-X2 hydrogen bonding on X~O bond lengths. The quantity Δd/d0 is the difference between the donor X1-C and the acceptor O-X2 bond length (d0 = value for fragments free of hydrogen bonding; ■: the co-crystal of Cy2FuA1; •: the co-crystal of Cy2SuA1; ▲: the co-crystal of Cy2AcA1.2H2O; ▼: the salt of Cy2LTA1.H2O; ◄: the salt of Cy2DTA1.H2O 104
Figure 4.16 FTIR spectra of (a) cytosine, (b) cytosine monohydrate, (c) fumaric acid, and (d) the co-crystal of Cy2FuA1. 104
Figure 4.17 FTIR spectra of (a) cytosine, (b) succinic acid, and (c) the co-crystal of Cy2SuA1. 105
Figure 4.18 FTIR spectra of (a) cytosine, (b) cytosine monohydrate, (c) acetylenedicarboxylic acid, and (d) the co-crystal of Cy2AcA1•2H2O. 105
Figure 4.19 FTIR spectra of (a) cytosine, (b) cytosine monohydrate, (c) l-tartaric acid, and (d) the salt of Cy2LTA1•H2O. 106
Figure 4.20 FTIR spectra of (a) cytosine, (b) cytosine monohydrate, (c) d-tartaric acid, and (d) the salt of Cy2DTA1•H2O. 106
Figure 4.21 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of 2:1 co-crystal of Cy2FuA1. 110
Figure 4.22 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of 2:1 salt of Cy2SuA1. 111
Figure 4.23 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of 2:1:1 co-crystal of Cy2AcA1. 2H2O 111
Figure 4.24 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of 2:1 co-crystal of Cy2LTA1•H2O. 112
Figure 4.25 (a) PXRD pattern from solution crystallization by cooling, and (b) theoretical PXRD pattern from SXD of 2:1 co-crystal of Cy2DTA1•H2O. 112
Figure 4.26 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the co-crystal Cy2FuA1, (b) supramolecular arrangements of cytosine and fumaric acid in the co-crystal Cy2FuA1 translating along a axis, and (c) the packing moiety of the hydrogen bonding network with fumaric acid molecule as the center surrounded by other components in the co-crystal Cy2FuA1 as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). 116
Figure 4.27 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the cocrystal Cy2SuA1, (b) supramolecular arrangements of cytosine and succinic acid in the cocrystal Cy2SuA1, and (c) the packing moiety the hydrogen bonding network with succinic acid molecule as the center surrounded by other components in the co-crystal Cy2SuA1 as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). 118
Figure 4.28 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the cocrystal Cy2AcA1.2H2O, (b) supramolecular arrangements of cytosine and acetylenedicarboxylic acid in the co-crystal Cy2AcA1.2H2O, and (c) the packing moiety of the hydrogen bonding network with acetylenedicarboxylic acid molecule as the center surrounded by other components in the co-crystal Cy2AcA1.2H2O as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). 120
Figure 4.29 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the salt Cy2LTA1•H2O, (b) hydrogen bonded formed by cytosine and water molecules in the salt Cy2LTA1•H2O, and (c) the packing moiety of the hydrogen bonding network with l-tartaric acid molecule as the center surrounded by other components in the salt Cy2LTA1.H2O as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). (d) L/D-tartaric acid crystal structure is plotted compared to Cy2LTA1•H2O and Cy2LTA1•H2O, distinguishing the chiral/racemic crystal structure. 122
Figure 4.30 Visualization of the (a) ORTEP plot of the molecular entities in the asymmetric unit of the salt Cy2DTA1•H2O, (b) hydrogen bonded formed by cytosine and water molecules in the salt Cy2DTA1•H2O, and (c) the packing moiety of the hydrogen bonding network with d-tartaric acid molecule as the center surrounded by other components in the salt Cy2DTA1.H2O as depicted by a computer software (Diamond 3.1, Crystal Impact Gbr, Brandenberg, Germany). 124
Figure 4.31 The solubility curve of (a) cytosine, (b) the salt of Cy2LTA1•H2O, (c) the salt of Cy2DTA1•H2O, (d) cytosine monohydrate, (e) the co-crystal of Cy2SuA1, (f) the co-crystal of Cy2AcA1.H2O, and (g) the co-crystal of Cy2FuA1. 126
Figure 4.32 The solubility values in water at 25℃ of (a) Cy2FuA1, (b) Cy2AcA1.2H2O, (c) Cy2SuA1, compared with hydrogen bonding number. 127
Figure 4.33 The solubility values in water at 25℃ of (a) Cy2FuA1, (b) Cy1AcA1.2H2O, (c) Cy2SuA, compared with the solubility values in water at 25℃ of (a) fumaric acid, (b) acetylenedicarboxylic acid, (c) succinic acid. 128
Figure 4.34 The mole fraction in water at 25℃ of (a) Cy2FuA1, (b) Cy1AcA1.2H2O, (c) Cy2SuA, compared with hydrogen bonding number. 128
Figure 4.35 Effect of cytosine concentration and fumaric acid concentration the solubility of 2:1 cocrystal of Cy2FuA1 at 37℃ showing reactant total solution concentrations ([cyt]T and [FuA]T) at equilibrium with 2:1 cocrystal of Cy2FuA1. Measured solubility of cytosine and 2:1 cocrystal of Cy2FuA1 in water were indicated by green ▼ and red ▲, respectively. Predicted solubility dependence on 2:1 cocrystal of Cy2FuA1 is represented by the solid line [cyt]T = (Ksp/[FuA]T)0.5 with Ksp = 9.95 × 10-6 m3. The dashed line represented reactant stoichiometry in solution corresponding to that of cocrystals. 131
Figure 4.36 Effect of cytosine concentration and succinic acid concentration the solubility of 2:1 cocrystal of Cy2SuA1 at 37℃ showing reactant total solution concentrations ([cyt]T and [SuA]T) at equilibrium with 2:1 cocrystal of Cy2SuA1. Measured solubility of cytosine and 2:1 cocrystal of Cy2SuA1 in water were indicated by green ▼ and red ▲ , respectively. Predicted solubility dependence on 2:1 cocrystal of Cy2SuA1 is represented by the solid line [cyt]T = (Ksp/[SuA]T)0.5 with Ksp = 4.35 × 10-5 m3. The dashed line represented reactant stoichiometry in solution corresponding to that of co-crystals. 132
Figure 4.37 Effect of cytosine concentration and acetylenedicarboxylic acid concentration on the solubility of 2:1 cocrystal of Cy2AcA1. 2H2O at 37℃ showing reactant total solution concentrations ([cyt]T and [AcA]T) at equilibrium with 2:1 co-crystal of CyAcA. 2H2O. Measured solubility of cytosine and 2:1 co-crystal of Cy2AcA1. 2H2O in water were indicated by green ▼ and red ▲ , respectively. Predicted solubility dependence on 2:1 salt of CyLTA. H2O is represented by the solid line [cyt]T = (Ksp/[AcA]T)0.5 with Ksp = 1.21 × 10-4 m3. The dashed line represented reactant stoichiometry in solution corresponding to that of co-crystals. 133
參考文獻 Child, S. L.; Patrick Stahly, G.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharmaceutics 2007, 4 (3), 323-338.
Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950-2967.
Basavoju, S.; Boström, D.; Velaga, P. Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6 (12), 2699-2708.
Friščić, T.; Jones, W.; Cocrystal Architecture and Properties: Design and Building of Chiral and Racemic Structures by Solid-solid Reactions. Faraday Discuss. 2007, 136, 167-168.
Christine, I. S.; N. Jung.; Moritz, B.; Ute, S.; Stefan B. The Hydrogen Bond and Crystal Engineering. Chem. Soc. Rev. 1993, 22 (6), 397-407.
Lü, Jian; Han, L. W.; Lin, J. X.; Liu, T. F.; Cao, R. Rare Case of a Triple-Starnded Molecular Braid in an Organic Cocrystal. Cryst. Growth Des. 2010, 10 (10), 4217-4220.
Lehn, J. M.; Supramolecular Chemistry: from Molecular Information Towards Self-organization and Complex Matter. Rep. Prog. Phys. 2004, 67 (3), 249-265.
Almarsson, O.; Zaworotko, M. J. Crystal Engineering of the Composition of Pharmaceutical phases. Do Pharmaceutical Co-crystals represent a New Path to Improved Medicines? Chem. Commun. 2004, (17), 1889-1896.
Thomas, R.; Kulkarni, G. U. Hydrogen Bonding in Proton-Transfer Complexes of Cytosine with Trimesic and Pyromellitic Acids. J. Mol. Struct. 2008, 873(1-3), 160-167.
Lemmerer, A.; Bernstein, J.; Kahlenberg, V. Hydrogen Bonding Patterns of the Co-crystal Containing the Pharmaceutical Active Ingredient Isoniazid and Terephthalic Acid. J. Chem. Crystallor. 2011, 41 (7), 991-997.
Hickey, M. B.; Peterson, M. L.; Scoppettuolo, L. A.; Morrisette, S. L.; Vetter, A. Guzman, H.; Remenar, J. F.; Zhang, Z.; Tawa, M. D.; Haley, S.; Zaworotko, M. J.; Almarsson, Ö. Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product. Eur. J. Pharm. Biopharm. 2007, 67 (1), 112–119.
Sokolov, A. N.; Friscic, T.; MacGillivray, L. R. Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals. J. Am. Chem. Soc. 2006, 128 (9), 2806–2807.
Koshima, H.; Miyauchi, M. Polymorphs of a Cocrystal with Achiral and Chiral Structures Prepared by Pseudoseeding: Tryptamine/ Hydrocinnamic Acid. Cryst. Growth Des., 2001, 1 (5), 355–357.
Cho, W.; Lee, H. J.; Oh, M. Growth-Controlled Formation of Porous Coordination Polymer Particles J. Am. Chem. Soc. 2008, 130 (50), 16943–16946.
Trask, A. V.; Jones, W. Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach. Top Curr. Chem. 2005, 254, 41-70.
Shu, C. C.; Lin, S. T. Prediction of Drug Solubility in Mixed Solvent Systems Using the COSMO-SAC Activity Coefficient Model. Ind. Eng. Chem. Res. 2011, 50 (1), 142-147.
Portalone, G.; Colapietro, M. Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reation. J. Chem. Crystallogr. 2009, 39 (3), 193-200.
Martins, F. T.; Doriguetto, A. C.; Ellena, J. From Rational Design of Drug Crystals to Understanding of Nucleic Acid Structures: Lamivudine Duplex. Cryst. Growth Des. 2010, 10 (2), 676-684.
Balasubramanian, T.; Muthiah, P. T.; Robinson, W. T. Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate. Bull. Chem. Soc. Jpn. 1996, 69 (10), 2919-2922.
Sellergren, B. Imprinted Polymers with Memory for Small Molecules, Proteins, or Crystals. Angew. Chem. Int. Ed. 2000, 39 (6), 1031-1037.
Pabo, C. O. Protein-DNA Recognition. Annu. Rev. Biochem. 1984, 53, 293-321.
Sarai, A.; Kono, H. Protein-DNA Recognition Patterns and Predictions. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 379-398.
Balzani, V.; Credi, A.; Venturi, M. Controlled Disassembling of Self-Assembling Systems: Toward Artfical Molecular-Level Devices and Machines. Proc. Natl. Acad. Sci. 2002, 99 (8), 4814-4817.
Barker, D. L.; Marsh, R. E. The Crystal Structure of Cytosine. Acta. Cryst. 1964, 17 (12), 1581-1587).
Jeffrey, G. A.; Kinoshita, Y. The Crystal Structure of Cytosine Monohydrate. Acta. Cryst. 1963, 16 (1), 20-28.
Newman, A. W.; Byrn, S. R. Solid-state analysis of the active pharmaceutical ingredient in drug products Drug Discovery Today 2003, 8 (19), 898-904.
Tiwary, A. K. Modification of Crystal Habit and Its Role in Dosage Form Performance Drug Dev. Ind. Pharm. 2001, 27 (7), 699-709.
Haines, P. J.; Wiburn, F. W. Differential Thermal Analysis and Differential Scanning Calorimetry. InThermal Methods of Analysis, 1st ed.; Blackie Academic and Professional: Scotland, 1995; pp. 69-114.
Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Infrared Spectroscopy. InIntroduction to Spectroscopy, 3rd ed.; Brooks/COLE Thomson Learning: Mississippi, 2001, pp. 13-24.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder-Handling Operation. Chapter 5 of InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 720-730.
Gotoh, K.; Masuda, H.; Higashitani, K. Fundamental Properties of Powder Beds. InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 413-423.
Gotoh, K.; Masuda, H.; Higashitani, K. Fundamental Properties of Powder Beds. InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 659-661.
Murthy, N. S.; Reidinger, F. X-ray Analysis. InMaterials Chracterization and Chemical Analysis, 2nd ed.; Sibilia, J. P.. Ed.; Wiley-Vch: New York, 1996, pp. 143-149.
Huang, T. C. Automatic X-ray Single Crystal Structure Analysis System for Small Molecule The Rigaku J. 2004, 21 (2), 43-46.
Zhang, Y.; Grant, D. J. W. Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates Acta Crystallogr. C, 2005, 61 (9), pp. m435-m438.
Hansen, L. Kr. ; Perlovich, G. L.; Baueer-Brandl, A. Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen Acta Crystallogr. E: Struct. Rep. Online 2003, 59 (9), 1357-1358.
Hansen, L. Kr.; Perlovich, G. L.; Bauer-Brandl, A. Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum Acta Crystallogr. E 2006, 62 (7), e17-e18.
Ciacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Experimental Method in X-ray Andneutron Crystallography. InFundamentals of Crystallography, 2nd ed.; Oxford University Press: New York, 2002; p. 336.
Glusker, J. P.; Trueblood, K. N. Experimental Measurement. InCrystal Structure Analysis A Primer, 2nd ed.; Oxford University Press: New York, 1985; pp. 42-47.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Components of Optical Instrument. InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning: Mississippi, 2001; pp. 182-183.
Bauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms Int. J. Pharm. 1996, 140 (2), 195-206.
Brittain, H. G.; Elder, B. J.; Isbeter, P. K.; Salemo, A. H. Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal Pharm. Res. 2005, 22 (6), 999-1006.
http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
Hilfiker, R.; Berghausen, J.; Blatter, F.; Burkhard, A.; Paul, S. M. D.; Freiermuth, B.; Geoffory, A.; Hofmeier, U.; Marcolli, C.; Siebenhaar, B.; Szelagiewicz, M.; Vit, A.; Raumer, M. V. Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization. J. Therm. Anal. Calorim. 2003, 73 (2), 429-440.
Giron, D. Thermal Analysis, and Calorimetric Methods in the Characterisation of Polymorphs and Solvates. Thermochim. Acta 1995, 245 (2), 1-59.
Clas, S. D.; Dalton, C. R.; Hancock, B. C. Differential Scanning Calorimetry: Applications in Drug Development. Pharm. Sci. Technol. Today 1999, 2 (8), 311-320.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan R. A Rapid Thermal Method for Cocrystal Screening. CrystEngComm 2008, 10 (6), 665 – 668.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Thermal Methods. InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning: Mississippi, 2001; pp. 798-801.
Kriss, T. C.; Kriss, V. M.; Vensa, M. History of the Operating Microscope: From Magnifying Glass to Microneurosurgery. Neurosurgery 1998, 42 (4), 899-907.
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology.”
Pan, A.; Lin, X.; Liu, R.; Li, C.; He, X.; Gao, H.; Zou, B. Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods. Nanotechnology 2005, 16 (10), 2402-2406.
Akpalu, Y.; Kielhorn, L.; Hsiao, B. S.; Stein, R. S.; Russell, T. P.; Egmond, J. V.; Muthukumar, M. Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. Macromol. 1999, 32 (3), 765-770.
Li, C.; Kirkwood, K. L.; Brayer, G. D. The Biological Crystallization Resource: Facilitaing Knowledge-Based Protein Crystallization. Cryst. Growth Des. 2007, 7 (11), 2147-2152.
Wright, A. J.; McGauley, S. E.; Narine, S. S.; Willis, W. M.; Lencki, R. W. Marangoni, A. G. Solvent Effects on the Crystallization Behavior of Milk Fat Fractions. J. Agric. Food Chem. 2000, 48 (4), 1003-1040.
Ahari, H.; Bedard, R. L.; Bowes, C. L.; Coombs, N.; Dag, O. M.; Jiang, T.; Ozin, G. A.; Petroy, S.; Sokolov, I.; Verma, A.; Vovk, G.; Young, D. Effect of Microgravity on The Crystallization of a Self-assembling Layered Material. Nature 1997, 388 (6645), 857-860.
Morissette, S. L.; Almarsson, O.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids. Adv. Drug Del. Rev. 2004, 56 (3), 275-300 (2004).
Basavoju, S.; Bostrom, D.; Velaga, S. P.; Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6 (12), 2699-2708.
Braga, D.; Grepioni, F.; Making Crystals from Crystals: A Green Route to Crystal Engineering and Polymorphism. Chem. Commun. 2005, 7 (29), 3635-3645.
Hilfiker, R.; Berghausen, J.; Blatter, F.; Burkhard, A.; Paul, S. M. D.; Freiermuth, B.; Geoffroy, A.; Hofmeier, U.; Marcolli, C.; Siebenhaar, B.; Szeiagiewicz, M.; Vit, A.; Raumer, M. V. Polymorphism-Integrated Approach, from High-Throughput Screening to Crystallization Optimization. J. Therm. Anal. Calorim. 2003, 73 (2), 429-440.
Grant, D. J. W.; Theory and Origin of Polymorphism. In Polymorphism in Pharmaceutical Solids; Marcel Dekker: New York, 1999, pp 1-21.
Yurteri, C. U.; Mazumder, M. K.; Grable, N.; Ahuja, G.; Trigwell, S.; Biris, A. S.; Sharma, R.; Sims, R. A. Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis. Pharticulate Sci. Tech. 2002, 20 (1), 59-79.
York, P. Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms. Int. J. Pharm. 1983, 14 (1), 1-28.
Portalone, G.; Colapietro, M. Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction. J. Chem. Crystallogr. 2009, 39 (3), 193-200.
Balasubramanian, T.; Muthiah, P. T.; Robinson, W. T. Cytosine-Carboxylate Interactions: Crystal Structure of Cytosineium Hydrogen Maleate. Bull. Chem. Soc. Jpn. 1996, 69 (10), 2919-2922.
Perumalla, S. R.; Suresh, E.; Pedireddi, V. R.; Nucleobases in Molecular Recognition: Molecular Adducts of adenine and Cytosine with COOH Functional Groups. Angew. Chem. Int. Ed. 2005, 44 (47), 7752-7757.
Yu, Z.; Li, W.; Hagen, J. A.; Zhou, Y.; Klotzkin, D.; Grote, J. G.; Steckl, A. J. Photoluminescence and Lasing Form Deoxyribonucleic Acid (DNA) Thin Doped with Sulforhodamine. Applied Optics 2007, 46 (9), 1507-1513.
Hagen, J. A.; Li, W.; Steckl, A. J.; Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex As an Electron Blocking Layer. Appl. Phys. Lett. 2006, 88 (17), 1-3.
Brittain, H. G.; Grant, D. J. W.; Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate. InPolymorphism in Pharmaceutical Solids; Marcel Dekker: New York, 1999; pp 279-330.
Bhattachar, S. N.; Deschenesa, L. A.; Wesleya, J. A. Solubility: It Is Not Just for Physical Chemists. Drug Discov. Today 2006, 11 (21-22), 1012-1018.
Price, C. J. Take Some Solid Steps to Improve Crystallization. Chem. Eng. Prog. 1997, 93 (9), 34-43.
Winn, D.; Doherty, M. F.; A New Technique for Predicting the Shape of Solution-Grown Organic Crystals. AlChE J. 1998, 44 (11), 2501-2514.
Mullin, J. W. Crystal Habit Modification. In Crystallization, 3rd ed.; Butterworth-Heinemann: London, 1997; pp 248-250.
Tiwary, A. K. Modification of Crystal habit and Its Role in Dosage from Performance. Drug Dev. Ind. Pharm. 2001, 27 (7), 699-709.
Rasenack, N.; Müller, B. W. Crystal Habit and Tabletting Behavior. Int. J. Pharm. 2002, 244 (1-2), 45-47.
Lahav, M.; Leiserowitz, L. The Effect of Solvent on Crystal Growth and Crystal Habit. Chem. Eng. Sci. 2001, 56 (7), 2245-2253.
Bernstein, J.; Davey, R. J.; Henck, J. Concomitant Polymorphs. Angew. Chem. Int. Ed. 1999, 38 (23), 3440-3461.
Cardew, P. T.; Davey, R. J.; The Kinetics of Solvent-Mediated Phase Transformation. Math. Phys. Sci. 1985, 398 (1815), 415-428.
Pack, K; Evans, J. M. B.; Myerson, A. S.; Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry. Cryst. Growth. Des. 2003, 3 (6), 991-995.
Threfall, T.; Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent. Org. Process Res. Dev. 2000, 4 (5), 384-390.
Yu, L. X.; Furness, M. S.; Raw, A.; Woodland Outlaw, K. P.; Nashed, N. E.; Ramos, E.; Miller, S. P. F.; Adams, R. C.; Fang, F.; Patel, R. M.; Holcombe Jr., F. O.; Chiu, Y.; Hussain, A. S. Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications. Pharm. Res. 2004, 20 (4), 531-536.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Scrrening. Pharm. Tech. 2006, 30 (10), 72-92.
Gao, D.; Raytting, J. H. Use of Solution Calorimetry to Determine the Extent of Crystallization of Drugs and Excipients. Int. J. Pharm. 1997, 151 (2), 183-192.
Schiedt, J.; Weinkauf, R.; Neumark, D. M.; Schlag, E. W. Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters. Chem. Phys. 1998, 239 (1-3), 511-514.
Barker, D. L.; Marsh, R. E. The Crystal Structure of Cytosine. Acta. Crytst. 1964, 17 (12), 1581-1587.
Jeffrey, G. A.; Kinoshita, Y. The Crystal Structure of Cytosine Monohydrate. Acta. Cryst. 1963, 16 (1), 20-28.
Ibahim, H. G.; Pisano, F.; Bruno, A. Polymorphism of Phenylbutazone: Properties and Compressional Behavior of Crystals. J. Pharm. Sci. 1977, 66 (5), 669-673.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Major Spectra-Structure Correlations by Spectral Regions. InIntroduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press Inc: New York, 1991; 394.
Cheney, M. L.; Weyna, D. R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M. J. Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study. Cryst. Growth Des. 2010, 10 (10), 4401-4413.
Lee, T.; Wang, P. Y. Screening, Manufacturing, Photoluminescence, and Molecular Recognition of Co-crystals: Cytosine with Dicarboxylic Acids. Cryts. Growth Des. 2010, 10 (3), 1419-1434.
Shan, N.; Zaworotko, M. J. The Role of Cocrystals in Pharmaceutical Science. Drug Discovery Today 2008, 13 (9-10), 440–446.
Callear, S. K.; Hursthouse, M. B.; Threlfall, T. L. Co-crystallisation of organic α,ω-dicarboxylic acids with the cyclic amides 2-pyrrolidinone and 2-imidazolidinone. CrystEngComm 2009, 11 (8), 1609-1614.
Kastelic, J.; Hodnik, Ž.; Šket, P.; Plavec, J.; Lah, N.; Leban, I.; Pajk, M.; Planinšek, O.; Kikelj, D. Fluconazole Cocrystals with Dicarboxylic Acids. Cryst. Growth Des. 2010, 10 (11), 4943-4953.
Braga, D.; Grepioni, F.; Lampronti, G. I. Supramolecular Metathesis: co-former exchange in co-crystals of pyrazine with (R,R)-, (S,S)-, (R,S)- and (S,S/R,R)-tartaric acid. CrystEngComm 2011, 13 (9), 3122-3124.
Steiner, T. The Whole Palette of Hydrogen Bonds: The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41 (1), 48-76.
Fayasankar, A.; Somwangthanaroj, A.; Shao, Z. J.; Rodríguez-Hornedo, N. Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharm. Res.2006, 23(10), 2381-2392.
Olenik, B.; Smolka T.; Boese, R.; Sustmann, R. Supramolecular Synthesis by Cocrystallization of Oxalic and Fumaric Acid with Diazanaphthalenes. Cryst. Growth Des. 2003, 3 (2), 183-188.
Taylor, R.; Kennard, O. Crystallographic Evidence for the Existence of CH.cntdot.. cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.CL hydrogen bonds. J. Am. Chem. Soc. 1982, 104 (19), 5063-5070.
Basavoju, S.; Bostrom, D.; Velaga, S. P. Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm. Res. 2008, 25(3), 530-541.
McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; O’Donnell, E.; Park, A. Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API. Pharm. Res. 2006, 23 (8), 1888-1897.
Ter Horst, J. H.; Deij, M. A. Cains, P. W. Discovering New Co-Crystals. Cryst. Growth Des. 2009, 9 (3), 1531–1537.
Zhang, G. G. Z.; Henry, R. F.; Borchardt, T. B.; Lou, X. Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation. J. Pharm. Sci. 2007, 96 (5), 990–995.
Trask, A. V.; Samuel Motherwell, W. D.; Jones, W. Solvent-Drop Grinding: Green Polymorph Control of Co-crystallization. Chem. Commun. 2004, (7), 890–891.
Weyna, D. R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M. J. Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs. Slow Evaporation. Crys. Growth Des. 2009, 9 (2), 1106–1123.
Gagniere, E.; Mangin, D.; Puel, F.; Bebon, C.; Klein, J. P.; Monnier, O.; Garcia, E. Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways. Cryst. Growth Des. 2009, 9 (8), 3376–3383.
Fris ̌c ̌ic ́, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallization Outcome. CrystEngComm 2009, 11 (3), 418–426.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. A Rapid Thermal Method for Cocrystal Screening. CrystEngComm 2008, 10 (6), 665–668.
Ling, A. R.; Baker, J. L. Halogen derivatives of quinine. Part III. Derivatives of quinhydrone. J. Chem. Soc. 1893, 63, 1314-1327.
Trask, A. V.; Shan, N.; Motherwell, W. D. S.; Jones, W.; Feng, S.; Tan, R. B. H.; Carpenter, K. J. Selective Polymorph Transformation via Solvent-drop Grinding. Chem. Commun. 2005, (7), 880-882.
Trask, A. V.; Van de Streek, J.; Samuel Motherwell, W. D.; Jones, W. Achieving Polymorphic and Stoichiometric Diversity in Co-crystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding. Crys. Growth Des. 2005, 5(6), 2233-2241.
Blagden, N.; Berry, D. J.; Parkin, A.; Javed, H.; Ibrahim, A.; Gavan, P. T.; De Matos, L. L.; Seaton, C. C. Current Directions in Co-crystal Growth. New J. Chem. 2008, 32 (10), 1659-1672.
Shan, N.; Toda, F.; Jones, W. Mechanochemistry and Co-crystal Formation: Effect of Solvents on Reaction Kinetics. Chem. Commun. 2002, (20), 2372-2373.
Fris ̌c ̌ic ́, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Crys. Growth Des. 2009, 9 (3), 1621-1637.
Trask, A. V.; Samuel Motherwell, W. D.; Jones, W. Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration. Crys. Growth Des. 2005, 5(3), 1013-1021.
Trask, A. V.; Jones, W. Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach. Top Curr. Chem. 2005, 254, 41-70.
Perakyla, M. A Model Study of the Enzyme-Catalyzed Cytosine Methylation Using ab Initio Quantum Mechanical and Density Functional Theory Calculations: pKa of the Cytosine N3 in the Intermediates and Transition States of the Reaction. J. Am. Chem. Soc. 1998, 120 (49), 12895-12902.
Cheney, M. L.; Weyna, D. R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, J. Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study. Cryst. Growth Des. 2010, 10 (10), 4401-4413.
Strathmann, T. J.; Mayneni, S. C. B. Speciation of Aqueous Ni(II)-Carboxylate and Ni(II)-Fulvic Acid Solutions: Combined ATR-FTIR and XAFS analysis. Geochim. Cosmochim. Acta 2004, 68 (17), 3441-3458.
Wu, D. H.; Ge, J. Z.; Cai, H. L.; Zhang, W.; Xiong, R. G. Organic Salt of Hydrogen L-tartaric Acis: A Novel Wide-temperature-range Ferroelectrics with a Reversible Phase Transition. 2011, 13 (1), 319-324.
Child, S. L.; Patrick Stahly, G.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharmaceutics 2007, 4 (3), 323-338.
Johnson, S. L.; Rumon, K. A. Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex. J. Phys. Chem. 1965, 69 (1), 74-86.
Aakeroy, C. B.; Desper, J.; Fasulo, M. E. Improving Success Rate of Hydrogen-Bond Driven Synthesis of Co-crystals. CystEngComm 2006, 8 (8), 586-588.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E.; Carbonyl Compounds In Introduction to infrared and Raman spectroscopy; Axademic Press Inc.: New York, USA, 1990, pp. 315,318.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E.; Amines, C=N, and N=O Compounds In Introduction to Infrared and Raman Spectroscopy; Axademic Press Inc.: New York, USA, 1990, pp, 340,388.
Ataka, K.; Osawa, M. In Situ Infrared Study of Cytosine Adsorption on Gold Electrodes J. Electroanal. Chem. 1999, 460 (1), 188-196.
Smith, G.; Lynch, D. E.; Byriel, K. A.; Kennard, C. H. L. The Utility of 4-Aminobenzoic Acid in Promotion of Hydrogen Bonding in Crystallization Process: the Structures of the Cocrystals with Halo and Nitro Substituted Aromatic Compounds, and the Crystal Structures of the Adducts with 4-Nitroniline (1:1), 4-(4-Nitrobenzyl)pyridine (1:2), and (4-Nitrophenyl)acetic acid (1:1). J. Chem. Crystallogr. 1997, 27 (5), 307-317.
Florian, J.; Baumruk, V.; Leszczynski, J. IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine. J. Phys. Chem. 1996, 100 (13), 5578-5589.
Saenger, W. Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking InPrinciples of Nucleic Acid Structure; Springer-Verlag: New York, USA, 1984, pp. 118-124.
Good, D. J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9 (5), 2252-2264.
Alhalaweh, A.; George, S.; Bostr m , D.; Velaga, S. P. 1:1 and 2:1 Urea−Succinic Acid Cocrystals: Structural Diversity, Solution Chemistry, and Thermodynamic Stability. Cryst. Growth Des. 2010, 10 (11), 4847-4855.
Jayasankar, A.; Sreenivas Reddy, L.; Bethune, S. J.; Rodríguez-Hornedo, N. Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry. Cryst. Growth Des. 2009, 9 (2), 889-897.
Nehm, S. J.; Rodríguez-Spong, B.; Rodríguez-Hornedo, N. Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation. Cryst. Growth Des. 2006, 6 (2), 592-600.
指導教授 李度(Tu Lee) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明