博碩士論文 973207017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.219.189.247
姓名 游家麒(Jia-chi You)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 凱薩格林雙反射式太陽能集光器之研究
(A Study on Solar Concentrator of Cassegrain Double-Reflector Type)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 應用投射疊紋技術於齒輪精度量測
★ 反射鏡減重與撓性支撐結構最佳化★ 曲面反射鏡減重與背向支撐撓性機構最佳化
★ 建構拉焊機感測系統之人機介面與機器學習★ 考量成像品質之最佳化塑膠透鏡結構設計
★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究
★ ZK型雙包絡蝸桿蝸輪組接觸分析★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發
★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發★ 整合視覺及力量控制之六軸機械手臂系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文討論凱薩格林式雙反射太陽能集光模組設計,主要架構是由一拋物面反射主鏡結合一非成像雙曲面反射次鏡,將太陽光匯聚到太陽能電池接收面,增加太陽能電池的使用效率。利用光學軟體建立分析模型,考慮太陽光單一波長550nm和太陽光擴散角0.267度下,找到最佳反射鏡形狀參數。而為了增加太陽能電池的使用效率及提昇容忍角度,設計與雙反射式集光模組搭配的二次光學元件。本研究共探討三種類型的二次光學元件,分別為金字塔型、方-圓型與圓錐型,其中又可細分為折射式與反射式二次光學元件,並以參數式分析進行二次光學元件的最佳化設計,並利用找出的最佳參數組合進行組裝誤差敏感性分析。最後針對雙反射式共面集光模組進行熱變形分析,探討溫度導致集光模組之光學元件產生熱變形對聚光特性的影響。
摘要(英) The present invention is a solar energy system which includes an optical assembly and a non-imaging concentrator. The optical assembly includes a primary mirror and a secondary mirror. The optical assemble solar radiation to the non-imaging concentrator where the radiation is output to a photovoltaic cell for conversion to electricity. The ray tracing software is utilized to simulate the optical characteristics of the model to effectively find the optimal mirror shapes, and solar incoming light to consider single wave 550nm and solar diffusible light 0.267 degrees。
In order to increase the efficiency of solar cells and reduce the error angle of the impact on the system, Second Optical Elements (SOE) is designed to collocate double reflective solar concentrator for the case without moving the detector. Three different types of SOE is discussed, including Pyramid type, Square-Circle type and Cone type. Parameter method is also applied with the optical simulations in order to find the best SOE design parameters, and to simulate with the best design parameters of the assemble tolerance. Finally, thermal deformation of the double reflective solar concentrator was analyzed by finite element method (FEM). The deformed mirror geometry determined from FEM was imported into ray tracing simulation to investigate the effects of temperature variations on the mirror.
關鍵字(中) ★ 集光器
★ 凱薩格林
★ 二次光學元件
關鍵字(英) ★ solar concentartor
★ cassegrain
★ second optical ele
論文目次 中文摘要 i
Abstract ii
圖目錄 vi
表目錄 xiii
致謝 iii
一、緒論 - 1 -
1.1 前言 - 1 -
1.2 文獻回顧 - 3 -
1.3 研究目的 - 5 -
1.4 章節介紹 - 5 -
二、理論介紹 - 7 -
2.1 太陽能集光器簡介 - 7 -
2.1.1 凱薩格林雙反射式集光器 - 10 -
2.1.2 菲涅爾透鏡式集光器 - 11 -
2.2 二次光學元件 - 12 -
2.3 拋物面與雙曲面的光學特性 - 12 -
2.4 太陽能集光器專有名詞介紹 - 13 -
三、雙反射式太陽能集光器設計與分析 - 15 -
3.1 雙反射式集光模組 - 15 -
3.2 初步分析 - 20 -
3.3 進階分析 - 23 -
3.4 加入二次光學元件(SOE)之光學分析 - 25 -
3.4.1 共面模組 - 32 -
3.4.2 共面模組二次光學元件設計討論 - 43 -
3.4.3 非共面模組 - 44 -
3.4.4 非共面模組之二次光學元件設計討論 - 55 -
3.4.5 電池接收面上的輻射照度 - 56 -
3.5 將焦點置於二次光學元件表面之光學分析 - 58 -
3.5.1 共面模組 - 58 -
3.5.2 調整焦點位置之共面模組二次光學元件設計的討論 - 62 -
3.5.3 非共面模組 - 63 -
3.5.4 調整焦點位置之非共面模組二次光學元件設計的討論 - 66 -
3.6 共面模組三種二次光學元件之優化設計綜合比較 - 68 -
3.7 非共面模組三種二次光學元件之優化設計綜合比較 - 71 -
3.8 結論 - 75 -
四、光機組裝誤差 - 77 -
4.1 雙反射鏡集光模組組裝誤差 - 77 -
4.1.1 共面模組的組裝誤差分析 - 77 -
4.1.2 非共面模組組裝誤差分析 - 83 -
4.2 加入二次光學元件的組裝誤差分析 - 88 -
4.2.1 共面模組加入二次光學元件的組裝誤差分析 - 88 -
4.2.2 非共面模組加入二次光學元件的組裝誤差分析 - 94 -
4.2.3 共面模組之綜合誤差 - 99 -
4.2.4 非共面模組之綜合誤差 - 100 -
4.2.5 加入二次光學元件的組裝誤差綜合比較 - 101 -
4.3 結論 - 102 -
五、雙反射式共面集光模組之熱變形分析 - 104 -
5.1 有限元素分析 - 104 -
5.2 基本假設 - 104 -
5.3 共面模組熱變形分析 - 105 -
5.4 共面模組熱變形後之光學模擬 - 112 -
5.4.1 主鏡變形 - 112 -
5.4.2 次鏡變形 - 112 -
5.4.3 主鏡與次鏡變形 - 113 -
5.6 結論 - 115 -
六、結論與未來工作 - 116 -
參考文獻 - 118 -
參考文獻 〔1〕 美國國家再生能源中心NREL, http://www.nrel.org
〔2〕 J. M. Gordon and D.Feuermann,“Tailored imaging optics for concentration and illumination at the thermodynamic limit,” Proc. of SPIE Vol. 5529
〔3〕 J.M. Gordon, “A 100-Sun Linear photovoltaic Solar Concentrator Design From Inexpensive Commercial Components,”Solar Energy 57 (4) 301-305 (1996)
〔4〕 J. M. Gordon and D. Feuermann, “Optical performance at the thermodynamic limit with tailored imaging designs,” Appl. Opt.44, 2327-2331 (2005)
〔5〕 D. Feuermann, J.M. Gordon and M. Huleihil, “Solar fiber-optic mini-dish concentrators: First experimental results and field experience,”Solar Energy 72 (6) 459-472 (2002)
〔6〕 Daniel Feuermann1and Jeffrey M. Gordon1, “Realization of compact, passively cooled, high-flux photovoltaic prototypes high-flux photovoltaic prototypes,” Proc. of SPIE Vol.5942
〔7〕 D. Feuermann, J.M. Gordin and H. Ries, High-flux solar concentration with imaging designs, Sol. Energy 65 83–89 (1999)
〔8〕 D. Feuermann and J.M. Gordon, “Solar fiber-optic mini-dishes: A new approach to the efficiency collection of sunlight,” Solar Energy 65 (3) 159-170 (1999)
〔9〕 Harald Ries and J.M. Gordon, “Double-tailored Imaging Concentrators,” Proc. of SPIE Vol. 3781
〔10〕 Natalia Ostroumov, J. M. Gordon and D. Feuermann,“ Panorama of dual-mirror aplanats for maximum concentration,” Appl. Opt.48, No. 26 / 10 (2009)
〔11〕 L. Fraas, J. Avery, H. Huang, Leonid Minkin, She Hui and Eli Shifman, “Towards a 33% Efficient Cassegrainian Solar Module”, Shanghai, October (2005)
〔12〕 D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002)
〔13〕 Stephen Horne, Gary Conley, Jeffrey Gordon, David Fork, Pat Meada, Eric Schrader and Thomas Zimmermann,“A Solid 500 Sun Compound Concentrator PV Design”, Photovoltaic Energy Conversion, IEEE 4th World Conference, Vol.1, pp.694–697 (2006)
〔14〕 K.Araki, M. Hiramatsu, Y. Kemmoku, A.Akisawa and M. Yamaguchi ”A Small Sun in anEtui–Possibilities in HCPV, ” IEEE Photovoltaic Specialists Conference Volume 1, May, pp.603 – 608 (2006)
〔15〕 D.Jenkins, "High-Uniformity Solar Concentrators for Photovoltaic Systems," Nonimaging Optics: Maximum Efficiency Light Transfer VI, Proceedings of SPIE Vol.4446
〔16〕 L. Fraas, Bo McConnell, “High power density photovoltaics-A path to cost-competitive solar electric power”, Renewable ENERGY World/September-October, pp.99-110 (2002)
〔17〕 V. Garboushian, ”A novel high-concentration PV technology for cost competitive utility bulk power generation” IEEE Photovoltaic Specialists Conference Volume 1, 5-9 Dec.,pp.1060–1063 (1994)
〔18〕 M. Vietoria, C. Domingez, I. Anton and G. Sala, “Comparative analysis of different secondary optical element for aspheric primary lens,”Optics Express, Vol. 17, No.8, pp.6487-6492 (2009)
〔19〕 V. M. Andreev, V. A. Grilikhes, A. A. Soluyanov, E. V. Vlasova and M. Z. Shvarts,“Optimization of the secondary optical for photovoltaic units with fresnel lense,”Proceedings of the 23th European Photovoltaic Solar Energy Conference, pp. 126-131 (2008)
〔20〕 C. Algora, “Very-High-Concentration Challenges of Multijiunction Solar Cells,” Concentrator Photovoltaics, Chapter 5, Springer-Verlag Berlin Heidelberg, (2007)
〔21〕 A. Luque1, G. Sala and I. Luque-Heredia, “Photovoltaic Concentration at the Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, vol.14 , pp. 413-428 (2006)
〔22〕 I. Anton and G. Sala, “Losses Caused by Dispersion of Optical Parameters and Misalignments in PV Concentrators,” Progress in Photovoltaics: Research and Applications, vol.13, pp.341-352 (2005)
〔23〕 K. Araki, H. Uozumi, M. Yamaguchi and Y. Kemmoku, “Development of a New 550 Concentrator Module with 3J Cells - Performance and Reliability,” 15th Inter. Photovoltaic Science & Engineering Conference, (2005)
〔24〕 M. J. O’Neill, A. J. McDanal and P. A. Jaster, “Development of Terrestrial Concentrator Modules Using High-Efficiency Multi-Junction Solar Cells,” 29th IEEE Photovoltaic Specialists Conference, (2002)
〔25〕 L. Fraas, J. Avery, L. Minkin and E. Shifman, “Possible Improvements in the Cassegrain PV Module,” 4th Inter. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen, (2007)
〔26〕 C. Sierra and A. J. Vazquez, “High Solar Energy Concentration With a Fresnel Lens,” J. Materials Science, vol. 20, pp. 1339-1343 (2005)
〔27〕 M. Hernándeza, “High-performance Köhler concentrators with uniform irradiance on solar cell,” Proc. of SPIE Vol. 7059 705908-1
〔28〕 M. Hernández, A. Cvetkovic, P. Benítez and J. Miñano,“High-performance Köhler concentrators with uniform irradiance on solar cell,” Proc. of SPIE Vol.7059
〔29〕 K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, G. Siefer and A. W. Bett, “A 28% Efficient, 400 and 200WP Concentrator Module,” 19th European Photovoltaic Solar Energy Conference and Exhibition , (2004)
〔30〕 J.Jaus, G. Peharz, A. Gombert and J. P. F. Rodriguez,“Development of Flatcon Modules Using Secondary Optics,”34th IEEE Photovoltaic Specialist Conference, pp. 1-6 (2009)
〔31〕 張智凱,被動式太陽追蹤器之追蹤系統開發,國立中央大學機械系碩士論文,民國97年
〔32〕 戴寶通,鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會出版,民國97年六月
〔33〕 丁均怡等編著,光學元件精密製造與檢測,國家實驗研究院儀器科技研究中心出版,民國96年五月
〔34〕 王世杰等編著,光機電系統整合概論,國家實驗研究院儀器科技研究中心出版, 民國94年七月
〔35〕 林世穆編著,ASAP 入門指南,Breault Research Organization, Inc
〔36〕 美國SolFocus公司, http://www.solfocus.com/en/index.php
〔37〕 http://www.schott.com
指導教授 陳怡呈(Yi-cheng Chen) 審核日期 2011-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明