博碩士論文 983204028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.144.94.134
姓名 陳政緯(Jeng-Wei Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 硝酸銨和苯并-18-冠-6醚1:1共晶化合物的篩選、製備、燃燒速率及其溶解
(Screening, Manufacturing, Burning Characteristics, and Dissolution of 1:1 Co-crystal of Ammonium Nitrate-Benzo-18-crown-6)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 結晶工程已發展出以自組裝現有分子產生新型固體而不需破壞或形成共價鍵的方法。以共晶化合物來量身訂做材料特性,已激發許多研究人員在結晶工程領域的興趣。
冠醚是超分子化學的代表之一。不僅是廣泛用在超分子化學和結晶工程中作為不同類型陽離子如水合氫離子(H3O+)、銨離子(NH_4^+)的主體而且也能藉由形成氫鍵和鹼金屬/過渡金屬離子和氫化陽離子形成穩定的錯合物。不同的冠醚有不同的分子孔洞大小且大部分可和特定陽離子有緊密鍵結。本論文中,硝酸銨被選用希望能改變其晶貌並希望誘導出新的具有特殊物理化學性質的同質異構物。
首先,利用23種有機溶劑篩選的方式,有關構形IV 硝酸銨的溶解度(solubility)、多形性(polymorphism)、結晶度(crystallinity)、晶貌(crystal habit)以及多晶形表(Form Space)的資料被完整收集。其次,基於硝酸銨和冠醚的多晶形表,利用反溶劑法可生成一新的1:1硝酸銨—苯并18冠6醚共晶化合物。分析工具,如LTDSC, TGA, FT-IR, OM, PXRD, SXD被用來了解其超分子結構和確定其分子間的化學劑量比。同時,也進行1:1硝酸銨—苯并18冠6醚共晶化合物的球型結晶研究。最後進行此共晶化合物的燃燒速率、溶解度和溶解速率的測量以便了解其性質。
摘要(英) Crystal engineering had developed a manner that it applied self-assembly of existing molecules to generate a new solid without the need to break or form covalent bonds. Cocrystals have excited the interest of many researchers in the crystal engineering field as a way to tailor-make material properties.
Crown ethers are one of the symbols of supermolecular chemistry. This is not only because of their extensive utilization in supermolecular chemistry and crystal engineering as hosts for variety of cationic species such as hydronium ion (H3O+), ammonium ion (NH_4^+) but also because crown ethers are able to form stable complexes with alkali or transition-metal ions and hydrogenate cations via hydrogen bonding. The different crown ethers have different cavity szies and can be chosen to bind most strongly with a given cation. In this thesis, ammonium nitrate was selected in order to change the crystal habit and to hopefully induce new polymorph of AN which possessed special physicochemical properties.
Firstly, engineering data of solubility, polymorphism, crystallinity, crystal habit and Form Space by solvent screening for Form IV ammonium nitrate (AN) was established. Secondly, a new cocrystal of AN and benzo-18-crown-6 (B18C6) was found by antisolvent method based on Form Space of AN and crown ether. Analytical tools such as LTDSC, TGA, FT-IR, OM, PXRD, SXD were used for understanding the supramolecular architectures and to ensure the stoichiometry of cocrystal. In the mean time, a spherical crystallization study for 1:1 cocrystal of AN-B18C6 was carried out based on Form Space of AN and B18C6. Finally, 1:1 cocrystal of AN-B18C6 was manufactured for burning characteristic, solubility and dissolution rate measurement to understand its properties.
關鍵字(中) ★ 相轉換
★ 低溫熱微差掃描分析儀
★ 燃燒特性
★ 共晶化合物
★ 苯并18冠6醚
★ 硝酸銨
關鍵字(英) ★ Ammonium nitrate (AN)
★ Bezno-18-crown-6 (B18C6)
論文目次 Table of contents
摘要 i
Abstract ii
Acknowledgement iv
Table of contents v
List of Tables ix
List of Figures x
Chapter 1 Executive Summary 1
1.1 Introduction 1
1.2 Brief Introduction of Ammonium Nitrate 9
1.3 Conceptual Framework 12
Chapter 2 Analytical Instruments 19
2.1 Introduction 19
2.2 Thermal Analysis Methods 22
2.2.1 Low Temperature Differential Scanning Calorimetry (LT-DSC) 22
2.2.2 Thermogravimetric Analysis (TGA) 24
2.3 Crystallographic Analysis Method 26
2.3.1 Single-Crystal X-ray Diffractometer 26
2.3.2 Powder X-ray Diffraction (PXRD) 29
2.4 Spectroscopic Analytical Method 32
2.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy 32
2.5 Microscopic Method 35
2.5.1 Optical Microscopy (OM) 35
2.5.2 Polarized Optical Microscopy (POM) 36
2.6 Low Vacuum Scanning Electron Microscopy (LVSEM) 37
2.7 Process Control Technology 40
2.7.1 Conductivity Meter 40
2.7.2 Strand Burner 42
2.8 Conclusion 44
Chapter 3 Solubility, Polymorphism, Crystal habit and Crystallinity of Ammonium Nitrate (AN) by Initial Solvent Screening 49
3.1 Introduction 49
3.1.1 Ammonium nitrate 50
3.1.2 Solubility 56
3.1.3 Polymorphism 57
3.1.4 Crystal Habits 59
3.1.5 Crystallinity 60
3.2 Materials 61
3.2.1 Ammonium Nitrate 61
3.2.2 Solvents 62
3.3 Experimental Methods 66
3.3.1 Initial Solvent Screening. 66
3.3.1.1 Temperature Cooling Method 67
3.3.2 Instrumental Analysis 67
3.3.2.1 Low Temperature Differential Scanning Calorimetry (LT-DSC) 67
3.3.2.2 Thermogravimetric Analysis (TGA) 68
3.3.2.3 Powder X-ray Diffractometry (PXRD) 69
3.3.2.4 Fourier Transform Infrared (FT-IR) Spectroscopy 69
3.3.2.5 Optical Microscopy (OM) 69
3.4 Results and Discussion 71
3.4.1 Solubility 71
3.4.2 Polymorphism 78
3.4.3Crystal Habits 80
3.4.4 Crystallinity 82
3.5 Conclusions 83
Chapter 4 Cocrystal of AN and B18C6 and its spherical agglomerate 91
4.1 Introduction 91
4.1.1 Antisolvent method 94
4.1.2 Spherical Crystallization 96
4.1.3 Gas generator propellant 97
4.2 Materials 101
4.2.1 Ammonium Nitrate and Crown Ether 101
4.2.2 Solvents 102
4.3 Experimental Section 103
4.3.1 Selection of solvent combination 103
4.3.2 Screening by antisolvent method 103
4.3.3 Spherical crystallization of AN+B18C6+EtOH+MTBE+H2O 108
4.3.4 Measurement of micromeritic and mechanical properties 110
4.3.5 Dissolution rate measurement 111
4.3.6 Burning rate measurement 113
4.3.7 Instrumental Analysis 114
4.3.7.1 Low Temperature Differential Scanning Calorimetry (LTDSC) 114
4.3.7.2 Thermogravimetric Analysis (TGA) 115
4.3.7.3 Powder X-ray Diffractometry (PXRD) 115
4.3.7.4 Fourier Transform Infrared (FT-IR) Spectroscopy 116
4.3.7.5 Optical Microscopy (OM) 116
4.3.7.6 Low Vacuum Scanning Electron Microscopy (LVSEM) 117
4.3.7.7 Orbital shaker 117
4.3.7.8 Digital Camera (DC) 117
4.4 Results and Discussion 118
4.4.1 Solvent Screening 118
4.4.2 Cocrystal of AN and B18C6 121
4.4.4 SEM Photomicrographs of Spherical Surface 130
4.4.5 Single Crystal X-ray Diffraction (SXD) 133
4.4.5 Burning characteristics 140
4.4.6 Observation of smoke 142
4.4.7 Solubility and dissolution rate 144
4.5 Conclusions 146
Chapter 5 Conclusions and Future Work 151
5.1 Conclusions 151
5.2 Future Work 153
參考文獻 1 Kim, K. J.; Kim, H. S. Coating of Energetic Materials using Crystallization. Chem. Eng. Technol. 2005, 28(8), 946-951.
2 Threfall, T. Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent. Org. Process Res. Dev. 2000, 4(5), 384-390.
3 Chimmalgi, A.; Hwang, D. J.; Grigoropoulos, C. P. Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films. Nano Lett. 2005, 5(10), 1924-1930.
4 Kim, T. S.; Kim, D. H.; Im, H. J.; Shimada, K.; Kawajiri, R.; Okubo, T.; Murata, H.; Mitani, T. Improved lifetime of an OLED using aluminum (III) tris (8-hydroxyquinolate). Sci. Tech. Adv. Mater. 2004, 5(3), 331–337.
5 Chen. J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S. Pharmaceutical Crystallization. Cryst. Growth. Des. 2011, 11(4), 887-895.
6 Abdel-Aal, E. A.; Rashad, M. M.; El-Shall, H. Crystallization of Calcium Sulfate Dihydrate at Different Supersaturation Ratios and Different Free Sulfate Concentrations. Cryst. Res. Technol. 2004, 39(4), 313-321.
7 Zhang, H.; Chen, Y.; Wang, J.; Gong, J. Investigation on Spherical Crystallization Process of Cefotaxime Sodium. Ind. Eng. Chem. Res. 2010, 49(3), 1402-1411.
8 Martino, P. D.; Cristofaro, R. D.; Barthélémy, C.; Joiris, E.; Filippo, G. P.; Sante, M. Improved Compression Properties of Propyphenazone Spherical Crystals. Int. J. Pharm. 2000, 197(1), 95-106.
9 Zhou, W.; Cao, J.; Liu, W.; Stoyanov, S. How Rigid Rod Self-Assemble at Curved Surfaces. Angew. Chem Int. Ed. 2009, 48(2), 378-381.
10 Ramnarace, J.; Ketcham, B.; Martin, R. C. Rocket and Space Sceince Series volume 2 propellants; Howard W. Sams & Co.:New York; 1967; pp 1-176.
11 Herrmann, m. J.; Engel, W. Phase Transitions and Lattice Dynamics of Ammonium Nitrate. Propell. Explos. Pyrot. 1997, 22(3), 143-147.
12 Sjölin, C, Mechanism of Caking of Ammonium Nitrate (NH4NO3) Prills, J. Agr. Food Chem. 1972, 20(4), 895-900.
13 Oommen, C.; Jain, S. R. Ammonium Nitrate: a Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67(3), 253-281.
14 Buczkowski, D. Influence of Ammonium Nitrate Prill’s Properties on Detonation Velocity of ANFO, Propell. Explos. Pyrot. 2007, 32(5), 411-414.
15 Price,C. J. Take Some Solid Steps to Improve Crystallization. Chem. Eng. Prog. 1997, 93(9), 34-43.
16 Myerson, A. S. Handbook of Industrial Crystallization, 2nd ed.; Butterworth-Heinemann: MA, 1992; pp 18-20.
17 Mullin, J. W. Crystallization, 3rd ed.; Butterworth-Heinemann: London, 1993; pp 172-201.
18 Bromberg, L.; Rashba-Step, J.; Scott, T. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol). Biophy. J. 2005, 89(5), 3424-3433.
19 Mahanty, S.; Sruti, J.; Niranjan Patra, C.; Bhanoji Rao, M. E. Particle Design of Drugs by Spherical Crystallization. IJPSN. 2010, 3(2), 912-918.
20 Paradkar, A. R.; Mahadik, K. R.; Pawar, A. P. Spherical Crystallization: a Novel Particle Design Technique. Indian Drug, 1998, 31(6), 283-299.
21 Amaro-González, D.; Biscans, B. Spherical Agglomeration During Crystallization of an active Pharmaceutical Ingredient. Powder Tech. 2002, 128(2-3), 188-194.
22 Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part I). Pharm. Technol. 2010, 34(3), 72-75.
23 Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical Crystallization for Lean Solid-Dosage Manufacturing (Part II). Pharm. Technol. 2010, 34(4), 88-103.
24 Kawashima, Y.; Okumura, M.; Takenaka, H. The Effects of Temperature on the Spherical Crystallization of Salicylic Acid. Powder Technol. 1984, 39(1), 41-47.
25 Sarner, S. F. Propellant Chemistry, 1st ed.; Reinhold Publishing Corporation: USA, 1966; PP 5-7.
26 Doxsee, K. M.; Francis, P. E. Crystallization of Ammonium Nitrate from Nonaqueous solvents. Ind. Eng. Chem. Res. 2000, 39(10), 3493-3498.
27 Doxsee, K. M.; Francis, P. E.; Weakley, J. R. Hydration, ion pairing, and sandwich motifs in ammonium nitrate cocrystales of crown ethers. Tetrahedron, 2000, 56(36), 6683-6691. 28 Kawashima, Y.; Capes, C. E. An Experimental Study of the Kinetics of Spherical Agglomeration in a Stirred Vessel. Powder Technol. 1974, 10(1), 85-92.
29 Bhadra, S.; Kumar, M.; Jain, S.; Agrawal, S.; Agrawal, G. P. Spherical crystallization of Mefenamic Acid. Pharm. Tech. 2004, 28(2), 66-76.
30 Pawar, A. P.; Paradkar, A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: A Novel Technique to Obtain Ibuprofen-Paracetamol Agglomerates, AAPS PharmSciTech, 2004, 5(3), 57-64.
31 Yilmaz, N.; Donaldson, B.; Gill, W.; Erikson, W. Solid propellant Burning Rate from Strand Burner Pressure Measurement. Propell. Explos. Pyrot. 2008, 33(2), 109-117.
32 Kohga, M.; Nishino, S. Burning Characteristics of Ammonium Nitrate-based Composite Propellants Supplemented with Ammonium Dichromate. Propell. Explos. Pyrot. 2009, 32(4), 340-346.
33 Giron, D. Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermoch. Acta, 1995, 248(1), 1-59.
34 Bauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms. Int. J. Pharm. 1996, 140(2), 195-206.
35 Chatterjee, T.; Sarma, M.; S. Das, K. Supramolecular Architectures form Ammonium-Crown Ether Inclusion Cocrystales in Polyoxometalate Association: Synthesis, Structure, and Spectroscopy, Cryst. Growth. Des. 2010, 10(7), 3149-3163.
36 Nokhodchi, A.; Maghsoodi, M.; Hassanzadeh, D. An Improvement of Physicomechanical Properties of Carbamazepine Crystals. Iran. J. Pharm. Res. 2007, 6(2), 83-93.
37 Sarner, S. F. Propellant Chemistry, 1st ed.; Reinhold Publishing Corporation: USA, 1966; PP 323-328.
38 Menke, K.; Böhnlein-Mauβ, J.; Schubert, H. Characteristic Properties of AN / GAP-Propellants, Propell. Explos. Pyrot. 1996, 21(3), 139-145.
39 Sinditskii, V. P.; Egorshev, V. Y.; Levshenkov, A. I.; Serushkin, V. V. Ammonium Nitrate: Combustion Mechanism and the Role of Additives. Propell. Explos. Pyrot. 2005, 30(4), 269-280.
指導教授 李度(Tu Lee) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明