博碩士論文 983207024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.188.240.4
姓名 麥立偉(Li-wei Mai)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 靈敏度可調式表面電漿共振感測器
(Sensitivity-tunable Surface Plasmon Resonance Sensor)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套新穎的量測技術「靈敏度可調式表面電漿共振感測器」,利用外差干涉術量測共振現象的相位變化,具有高靈敏度、高解析度的優點。此外,透過調整系統中的四分之一波片方位角,可達到依待測物調整靈敏度的效果,是一套有潛力的二維度量測系統。
本研究使用純水溶液及不同濃度的酒精水溶液估算系統靈敏度及解析度,當待測物折射率較大時,增加四分之一波片方位角度可使系統有較佳的靈敏度;當折射率差異較大時,亦可調整方位角度使偵測區間增大。
經實驗證明本系統最佳靈敏度達1.7×10^5(°/RIU),在系統穩定度為0.09度的情況下,最佳解析度達5.3×10^-7RIU,偵測範圍達2mm×2mm。
摘要(英) A novel optical measurement technology “Sensitivity-tunable surface plasmon resonance sensor” is proposed. This system has advantage of high sensitivity and high resolution by employing heterodyne interferometry for SPR phase detection. Besides, the sensitivity is tunable according to difference of samples by adjusting the azimuthal angle of quarter wave plate. This technique is quite a potential sensing system with two-dimension.
In this study, the pure water and alcohol solutions are used to estimate sensitivities and resolutions. Increasing the azimuthal angle makes a better sensitivity while sample’s refractive index is higher. In additional, to tune the quarter wave plate can provide a larger dynamic range as the difference of refractive index larger.
According to the results, the best sensitivity of this system is 1.7×10^5 (°/RIU). The resolution is 5.3×10^-7 RIU with the stability of phase drift 0.09 degree. Meanwhile, the sensing area is 2mm×2mm.
關鍵字(中) ★ 差動偵測
★ 外差干涉術
★ 波長調制
★ 表面電漿共振
關鍵字(英) ★ differential detection
★ heterodyne interferometry
★ wavelength-modulated
★ surface plasmon resonance
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章緒論 1
1-1研究背景 1
1-2文獻回顧 2
1-2-1表面電漿共振 2
1-2-2波長調制外差干涉術 3
1-2-3靈敏度 5
1-3研究動機、目的與方法 7
第二章基礎理論 9
2-1表面電漿共振原理 9
2-3空間濾波器原理 16
第三章實驗架構 17
3-1光學架構 17
3-1-1一維度系統架構 17
3-1-2二維度系統架構 22
3-2元件儀器介紹 26
3-2-1一維度系統之元件與儀器 26
3-2-2二維度系統之元件與儀器 30
3-3旋轉平台設定 32
3-4實驗流程 33
3-4-1一維度系統 33
3-4-2二維度系統 34
3-5實驗準備 35
第四章實驗結果與討論 36
4-1一維度系統實驗 36
4-1-1尋找存在最大靈敏度之方位角實驗 39
4-1-2尋找最大量測範圍之方位角實驗 41
4-1-3系統對折射率解析度 41
4-2相位解調實驗 43
4-3二維度系統實驗 46
4-3-1尋找存在最大靈敏度之方位角實驗 46
4-3-2系統對折射率解析度 47
4-3-3全場偵測實驗 48
4-4-1共振角誤差 50
4-4-2差動相位解調誤差 52
第五章結論與未來展望 54
5-1結論 54
5-2未來展望 55
參考文獻 56
參考文獻 [1]. J. Y. Lee, H. C. Shih, C. T. Hong and T. K. Chou, “Measurement of refractive index change by surface plasmon resonance and phase quadrature interferometry”, Optics Communications, Vol. 276, pp. 283-287, 2007.
[2]. A. A. Kolomenskii, P. D. Gershon and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance”, Applied Optics, Vol. 36, pp. 6539-6547, 1997.
[3]. R. Karlsson and R. Stahlberg, “Surface Plasmon Resonance Detection and Multispot Sensing for Direct Monitoring of Interactions Involving Low-Molecular-Weight Analytes and for Determination of Low Affinities”, Analytical Biochemistry, Vol. 228, pp. 274-280, 1995.
[4]. H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S.U. Jen and P. T. Leung, “Surface plasmon resonance monitoring of temperature via phase measurement”, Optics Communications, Vol. 241, pp. 409-418, 2004.
[5]. A. A. Kolomenskii, P. D. Gershon and H. A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids”, Applied Optics, Vol. 39, pp. 3314-3320, 2000.
[6]. M. H. Chiu, B. Y. Shih, C. W. Lai, L. H. Shyu and T. H. Wu, “Small absolute distance measurement with nanometer resolution using geometrical optics principles and a SPR angular sensor”, Sensors and Actuators A: Physical, Vol. 141, pp. 217-223, 2008.
[7]. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors”, Optics Communications, Vol. 150, pp. 5-8, 1997.
[8]. P. I. Nikitina, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing”, Sensors and Actuators A: Physical, Vol. 85, pp. 189-193, 2000.
[9]. A. J. Haes, S. Zou, G. C. Schatz, and Richard P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles”, The Journal of Physical Chemistry B, Vol. 108, pp. 109-116, 2003.
[10]. J. Homola, “Present and future of surface plasmon resonance biosensors”, Analytical and Bioanalytical Chemistry, Vol. 377, pp. 528-539, 2003.
[11]. R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum”, Proceedings of the Physical Society of London, Vol. 18, pp. 269-275, 1902.
[12]. U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)”, Journal of the Optical Society of America A, Vol. 31, pp. 213-222, 1941.
[13]. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films”, Physical Review, Vol. 106, pp. 874-881, 1957.
[14]. A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection”, Zeitschrift für Physik A Hadrons and Nuclei, Vol. 216, pp. 398-410, 1968.
[15]. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light”, Zeitschrift Für Naturforschung A, Vol. 23, pp. 2135-2136, 1968.
[16]. M. Piliarik and J. Homola, “Surface plasmon resonance sensors approaching their limits?”, Optics Express, Vol. 17, pp. 16505-16517, September 2009.
[17]. H. E. Bruijn, R. P. H. Kooyman and J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations”, Applied Optics, Vol. 31, pp. 440-442, 1992.
[18]. J. Homola, I. Koudela and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison”, Sensors and Actuators B: Chemical, Vol. 54, pp. 16-24, 1999.
[19]. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky and Y. M. Shirshov, “Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance”, Sensors, Vol. 2, pp. 62-70, 2002.
[20]. S. G. Nelson, K. S. Johnston and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sensors and Actuators B: Chemical, Vol. 35, pp. 187-191, 1996.
[21]. R. Naraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method”, Sensors and Actuators B: Chemical, Vol. 107, pp. 952-956, 2005.
[22]. X. Yu, D. Wang and Z. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection”, Sensors and Actuators B: Chemical, Vol. 107, pp. 285-290, 2003.
[23]. S. K. Özdemir and G. Turhan-Sayan, “Temperature Effects on Surface Plasmon Resonance: Design Considerations for an Optical Temperature Sensor”, Journal of Lightwave Technology, Vol. 21, pp. 805-814, 2003.
[24]. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance”, Optics Express, Vol. 14, pp. 5641-5650, 2006.
[25]. J. Castillo, H. Gutierrez, J. Chirinos and J. C. and Perez, “Surface plasmon resonance device with imaging processing detector for refractive index measurements”, Optics Communications, Vol. 283, pp. 3926-3930, 2010.
[26]. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation”, Sensors and Actuators B: Chemical, Vol. 41, pp. 207-211, 1998.
[27]. Y. Wang, “Wavelength selection with coupled surface plasmon waves”, Applied Physics Letters, Vol. 82, pp. 4385-4387, 2003.
[28]. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications”, Quantum Electronics, Vol. 27, pp. 653-654, 1997.
[29]. C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection”, Optics Express, Vol. 12, pp. 3509-3514, 2004.
[30]. J. Y. Lee and S. K. Tsai, “Measurement of refractive index variation of liquids by surface plasmon resonance and wavelength-modulated heterodyne interferometry”, Optics Communications, Vol. 284, pp. 925-929, 2011.
[31]. 黃俊揚,「應用誤差分析理論探討刀具磨床之精度提昇策略」,國立雲林科技大學,碩士論文,民國95年。
[32]. K. Tatsuno and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer”, Applied Optics, Vol. 26, pp. 37-40, 1987.
[33]. J. Chen, Y. Ishii and K. Murata, “Heterodyne interferometry with a frequency-modulated laser diode”, Applied Optics, Vol. 27, pp. 124-128, 1988.
[34]. J. Homola, S. S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species”, Sensors and Actuators B: Chemical, Vol. 41, pp. 3-15, January 1999.
[35]. 蔡欣凱,「波長調制旋光外差干涉術應用於表面電漿共振偵測」,國立中央大學,碩士論文,民國99年。
指導教授 李朱育(Ju-yi Lee) 審核日期 2011-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明