博碩士論文 983204052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.189.22.136
姓名 賴建融(Jian-rung Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 ZnS:Mn2+量子點合成與水性分散無
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗的目的在開發一種高產量的水溶性ZnS:Mn2+量子點製程。我們將高濃
度的氯化鋅與硫化鈉水溶液逐滴加入當作緩衝溶液的乙二醇中,並控制反應時的
pH 值,會得到白色不透明的硫化鋅。將沉澱物用去離子水清洗後,離心取出沉
澱物,進行XRD 作晶體鑑定,可以確定產物為硫化鋅的閃鋅礦(zinc-blend)結構。
從結晶峰的半高寬估計其晶粒大小在2~4nm 之間。我們也發現在酸性中合下的
產物,粒子粒徑分佈較窄且小。
將上述清洗過之硫化鋅產物,再利用MPA 於水溶劑中進行改質,可得到
ZnS:Mn2+@MPA 水溶性量子點。此一量子點可分散在pH=6~11 的水中呈現透明狀。
由UV-abs 的起始吸收波長可計算出結晶大小在4~7nm 之間。而TEM 觀察的結果
也顯示出單顆結晶大小在5~7nm。
我們也嘗試了在不同的鋅硫比例下進行反應,發現在硫原子過量的情況下,
結晶會變大且會降低420nm 的藍光放射。另外,也試著將MPA 在合成的過程中加
入。使MPA 不僅當做改質劑,也當作保護劑使用。在鹼性合成(pH>10.8)下,MPA
的硫醇基團會解離,而與鋅有較強鍵結能力。但添加有MPA 並且在鹼性下進行反
應者,硫化鋅產物之結晶性會大幅降低。同樣先添加MPA 而在酸性下合成者,XRD
繞射強度較高,且UV-abs 也有相當明顯的吸收峰。從起始吸收波長計算出的結
晶大小為3.7nm。所以整體而言,應該在酸性條件下進行硫化鋅沉澱才可以獲得
較小及較整齊之結晶。
摘要(英) The purpose of this research is to develop a low-cost, low environmental impact,
and high yield of ZnS: Mn2 + QDs process. ZnS: Mn2 + QD were successfully prepared
by neutralizing aqueous solution of zinc chloride and sodium sulfide under controlled
the pH value. Using XRD to identify the crystal shows that the product was ZnS
sphalerite (zinc-blend) structure, whose domain size is only 2~3nm calculated from
the power XRD peak width.
ZnS: Mn2 + QD was washed by deionized water, centrifuged out the sediment,
and modified by MPA aqueous. The obtained ZnS: Mn2 +@ MPA QDs can be
dispersed in water. The transparent dispersed solution crystal size also calculated by
on-set of the UV-abs absorption, it shows that crystal size was between 4 ~ 7nm.
TEM observation also showed that the size of a single crystal in 5 ~ 7nm.
We also tried to add different ratio of Zn/S. We found that when sulfur atoms
were excess, it will cause crystal size became larger and reduces the 420nm blue light
radiation. We not only use the MPA as a modifier, but also try to add it as a protective
agent during synthesis process.
Although the pH value of synthesis under the alkaline (pH> 10.8), MPA will
dissociate its thiol groups and enhance its bonding ability. However, we found that
will significantly reduce the crystallization of zinc sulfide. But under acid synthesis,
XRD showed that the larger diffraction intensity. UV-abs also had quite obvious
absorption peak, calculated by on-set of the UV-abs absorption, crystal size was
3.7nm.
關鍵字(中) ★ 硫化鋅
★ 量子點
★ 水性分散
關鍵字(英) ★ ZnS
★ QDs
★ water-soluble
論文目次 摘要...............................................................................................................................I
ABSTRACT.................................................................................................................. II
目錄.............................................................................................................................III
圖目錄..........................................................................................................................V
表目錄....................................................................................................................... VII
第一章 緒論.................................................................................................................1
1.1 前言....................................................................................................................1
1-1.1 硫化鋅材料簡介..........................................................................................1
1-1.2 奈米粒子與量子點......................................................................................3
1-1.3 量子點之應用..............................................................................................4
1-2 文獻回顧.............................................................................................................5
1-2.1 量子點的合成..............................................................................................5
1-2.2 量子點發展史..............................................................................................6
1-2.3 硫化鋅量子點..............................................................................................7
1-2.4 親水性量子點..............................................................................................9
1.3 研究目的............................................................................................................12
第二章 硫化鋅製備與改質.......................................................................................14
2-1 硫化鋅製備前言...............................................................................................14
2-2 硫化鋅製備.......................................................................................................15
2.3 硫化鋅表面改質...............................................................................................17
2.4 直接在合成過程中加入MPA 的嘗試...............................................................19
2.5 實驗藥品...........................................................................................................20
2-6 儀器分析...........................................................................................................21
第三章 結果與討論...................................................................................................24
IV
3-1 合成硫化鋅條件之選擇...................................................................................24
3-1.1 緩衝液、加熱時間及清洗方式的選擇....................................................24
3-1.2 反應pH 值的選擇.....................................................................................28
3-1.3MPA 改質方法的比較................................................................................32
3-1.4 鋅硫比的影響...........................................................................................46
3.2 直接在合成過程中加入MPA 的嘗試............................................................48
第四章 結論與建議...................................................................................................51
Reference……………………………………………………………………...……...53
附錄ㄧ 實驗步驟整理...............................................................................................57
不同的PH 下進行中和(水、乙二醇)....................................................................57
使用乙二醇當作緩衝溶液......................................................................................57
中和液改質MPA(酸性改質)...................................................................................59
中和液水洗產物改質MPA(酸性改質)...................................................................59
中和液水洗產物改質MPA(鹼性改質)...................................................................59
鋅硫添加比例..........................................................................................................61
將MPA 放入緩衝液中使用......................................................................................61
將MPA 放入鋅源中使用..........................................................................................62
參考ZHUANG 的做法13 ..........................................................................................62
附錄二 實驗使用之藥品...........................................................................................64
附錄三 實驗使用之分析儀器...................................................................................65
參考文獻 1. Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: a class of large
molecules. Accounts of Chemical Research 1990, 23 (6), 183-188.
2. Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-dot-tagged microbeads for
multiplexed optical coding of biomolecules. Nature Biotechnology 2001, 19 (7),
631.
3. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of
nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor
nanocrystallites. Journal of the American Chemical Society 1993, 115 (19),
8706-8715.
4. Mews, A.; Eychmueller, A.; Giersig, M.; Schooss, D.; Weller, H. Preparation,
characterization, and photophysics of the quantum dot quantum well system
cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of Physical
Chemistry 1994, 98 (3), 934-941.
5. Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly
Luminescing ZnS-Capped CdSe Nanocrystals. The Journal of Physical
Chemistry 1996, 100 (2), 468-471.
6. Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS
Nanocrystals Using CdO as Precursor. Journal of the American Chemical
Society 2000, 123 (1), 183-184.
7. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of
manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72 (3), 416.
8. Gan, L. M.; Liu, B.; Chew, C. H.; Xu, S. J.; Chua, S. J.; Loy, G. L.; Xu, G. Q.
Enhanced Photoluminescence and Characterization of Mn-Doped ZnS
Nanocrystallites Synthesized in Microemulsion. Langmuir 1997, 13 (24),
6427-6431.
9. Ye, X.; Fang, Y.; Hu, Y.; Xia, T.; Zhuang, W.; Long, Z. Formation of cubic zinc
sulfide nanocrystals in paraffin liquid. Materials Letters 2007, 61 (28),
5026-5028.
10. Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S.
Luminescent quantum dots for multiplexed biological detection and imaging.
54
Current Opinion in Biotechnology 2002, 13 (1), 40-46.
11. Schapotschnikow, P.; Hommersom, B.; Vlugt, T. J. H. Adsorption and Binding
of Ligands to CdSe Nanocrystals. The Journal of Physical Chemistry C 2009,
113 (29), 12690-12698.
12. Chan, W. C. W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive
Nonisotopic Detection. Science 1998, 281 (5385), 2016-2018.
13. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. Synthesis of
water-soluble ZnS : Mn2+ nanocrystals by using mercaptopropionic acid as
stabilizer. J. Mater. Chem. 2003, 13 (7), 1853-1857.
14. Corrado, C.; Jiang, Y.; Oba, F.; Kozina, M.; Bridges, F.; Zhang, J. Z. Synthesis,
Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals? ? The
Journal of Physical Chemistry A 2009, 113 (16), 3830-3839.
15. Kho, R.; Torres-Mart 躪?z, C. L.; Mehra, R. K. A Simple Colloidal Synthesis for
Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders. Journal
of Colloid and Interface Science 2000, 227 (2), 561-566.
16. Zhao, D.; He, Z.; Chan, W. H.; Choi, M. M. F. Synthesis and Characterization of
High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots
Capped by N-Acetyl-l-cysteine Via Hydrothermal Method. The Journal of
Physical Chemistry C 2008, 113 (4), 1293-1300.
17. Clapp, A. R.; Goldman, E. R.; Mattoussi, H. Capping of CdSe-ZnS quantum
dots with DHLA and subsequent conjugation with proteins. Nat. Protocols 2006,
1 (3), 1258-1266.
18. Shankara Narayanan, S.; Sinha, S. S.; Verma, P. K.; Pal, S. K. Ultrafast energy
transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled
DNA. Chemical Physics Letters 2008, 463 (1-3), 160-165.
19. Oladeji, I. O.; Chow, L. A study of the effects of ammonium salts on chemical
bath deposited zinc sulfide thin films. Thin Solid Films 1999, 339 (1-2),
148-153.
20. Dong, B.; Cao, L.; Su, G.; Liu, W.; Qu, H.; Zhai, H. Water-soluble ZnS:Mn/ZnS
core/shell nanoparticles prepared by a novel two-step method. Journal of Alloys
and Compounds 2010, 492 (1-2), 363-367.
21. Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. Photophysical Properties
55
of ZnS Nanoclusters with Spatially Localized Mn2+. The Journal of Physical
Chemistry 1996, 100 (11), 4551-4555.
22. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative fluorescence quantum
yields using a computer-controlled luminescence spectrometer. Analyst 1983,
108 (1290), 1067-1071.
23. LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation
of Monodispersed Hydrosols. Journal of the American Chemical Society 1950,
72 (11), 4847-4854.
24. Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Materials
Chemistry and Physics 2006, 99 (1), 174-180.
25. Toikka, G.; Hayes, R. A.; Ralston, J. Surface Forces between Spherical ZnS
Particles in Aqueous Electrolyte. Langmuir 1996, 12 (16), 3783-3788.
26. Degen, A.; Kosec, M. Effect of pH and impurities on the surface charge of zinc
oxide in aqueous solution. Journal of the European Ceramic Society 2000, 20
(6), 667-673.
27. Ichikawa, T.; Shiratori, S. Fabrication and Evaluation of ZnO Nanorods by
Liquid-Phase Deposition. Inorganic Chemistry 2010, 50 (3), 999-1004.
28. Ihs, A.; Liedberg, B. Chemisorption of -cysteine and 3-mercaptopropionic acid
on gold and copper surfaces: An infrared reflection-absorption study. Journal of
Colloid and Interface Science 1991, 144 (1), 282-292.
29. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. Fundamental studies of microscopic
wetting on organic surfaces. 1. Formation and structural characterization of a
self-consistent series of polyfunctional organic monolayers. Journal of the
American Chemical Society 1990, 112 (2), 558-569.
30. Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P.
Compact and highly stable quantum dots through optimized aqueous phase
transfer. Parak, W. J., Yamamoto, K., Osinski, M., Eds.; SPIE: San Francisco,
California, USA, 2011; pp 79091B-6.
31. Keire, D. A.; Strauss, E.; Guo, W.; Noszal, B.; Rabenstein, D. L. Kinetics and
equilibria of thiol/disulfide interchange reactions of selected biological thiols
and related molecules with oxidized glutathione. The Journal of Organic
Chemistry 1992, 57 (1), 123-127.
56
32. Oda, S.; Kukimoto, H. A new emission band in self-activated ZnS. Journal of
Luminescence 1979, 18-19 (Part 2), 829-832.
33. Bol, A. A.; Meijerink, A. Long-lived Mn2+ emission in nanocrystalline
ZnS:Mn2+. Phys. Rev. B 1998, 58 (24), R15997.
34. Bhargava, R. N. Doped nanocrystalline materials -- Physics and applications.
Journal of Luminescence 1996, 70 (1-6), 85-94.
35. Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and
Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Letters 2001, 1 (8),
429-433.
36. Quan, Z.; Wang, Z.; Yang, P.; Lin, J.; Fang, J. Synthesis and Characterization of
High-Quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) Luminescent
Nanocrystals. Inorganic Chemistry 2007, 46 (4), 1354-1360.
37. Srivastava, B. B.; Jana, S.; Karan, N. S.; Paria, S.; Jana, N. R.; Sarma, D. D.;
Pradhan, N. Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale
Synthesis. The Journal of Physical Chemistry Letters 2010, 1 (9), 1454-1458.
38. Lu, C.; Cui, Z.; Li, Z.; Yang, B.; Shen, J. High refractive index thin films of
ZnS/polythiourethane nanocomposites. J. Mater. Chem. 2003, 13 (3), 526-530.
指導教授 蔣孝澈 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明