博碩士論文 983204034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:44.222.194.62
姓名 陳飛宏(FEI-HONG CHEN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附常溫捕獲氣化複循環發電系統中二氧化碳與純化氫氣模擬
(Simulation of carbon dioxide capture and hydrogen purification in integrated gasification combined cycle by pressure swing adsorption at room temperature)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球暖化問題日益嚴重,其中二氧化碳及其他溫室氣體乃是造成全球暖化之主因。如何減緩二氧化碳之排放,已成為世界各國在降低溫室氣體影響方面的研究重點。而二氧化碳之排放最主要的來源為發電及工業界中利用天然氣或碳氫化合物產氫的製程上,目前經由氣化爐氣化煤炭後捕獲二氧化碳之技術,乃是先經由水煤氣轉化反應(water-gas shift reaction),再經過冷卻器降溫以將水汽去除後再加以捕獲二氧化碳。藉由變壓吸附法可以產出高濃度的氫氣做為能源使用,以應用於新興能源的供應上;而將二氧化碳回收封存則可減少其對溫室效應造成的影響。
變壓吸附法為一分離氣體混合物之連續性循環程序,利用氣體混合物中各成分對吸附劑之吸附能力的不同而產生的吸附選擇性來篩選氣體,並利用高壓吸附、低壓脫附以得到高濃度的產物。
本研究利用數值模擬的方法,模擬於常溫下,在含有一氧化碳、二氧化碳及氫氣等成份中,利用雙塔之變壓吸附製程與吸附劑的搭配,分離出二氧化碳及氫氣,並且探討各操作變數(如:進料壓力、吸附塔塔長、步驟時間等)對模擬結果的影響,尋求最佳的分離操作條件,以達到兼顧能源與環保的雙重目標。
摘要(英) Global warming has become more and more serious, which is caused by greenhouse gases. Cutting down the emission of CO2 has already become the major research target in the world. The main sources of CO2 include the processes of generating electric power and producing hydrogen from natural gas and hydrocarbon. The CO2 which comes from coal is generated by gasifier and the water-gas shift reaction step of the process. Pressure swing adsorption can purify hydrogen with high concentration to be used as energy source and recover carbon dioxide to decrease the impact on the greenhouse effect.
Pressure swing adsorption is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This technology consists of gas adsorption at high pressure and desorption at low pressure to produce high-purity product.
This study plans to use dual-bed PSA process to separate high purity hydrogen and to capture CO2 from syngas, which contains CO, CO2 and hydrogen, at room temperature. The optimal operating condition is discussed by varying the operating variables, such as feed pressure, length of adsorber and step time. By PSA process, the goal of energy generation and environmental protection could be achieved at the same time.
關鍵字(中) ★ 二氧化碳
★ 變壓吸附
★ 氫氣
關鍵字(英) ★ PSA
★ CO2
★ H2
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xiv
第一章、緒論 1
第二章、簡介及文獻回顧 4
2-1 變壓吸附之簡介 4
2-1-1 變壓吸附基本原理 4
2-1-2 吸附劑及其選擇性 5
2-1-3 變壓吸附基本操作步驟 6
2-2 文獻回顧 8
2-2-1 PSA程序之發展及改進 8
2-2-2 理論之回顧 12
2-3 研究背景與目的 15
第三章、理論 20
3-1 基本假設 21
3-2統制方程式 22
3-3吸附平衡關係式 26
3-4參數推導 27
3-4-1線性驅動質傳係數質傳係數 27
3-4-2軸向分散係數 30
3-4-3 熱傳係數 31
3-5邊界條件與流速 33
3-5-1邊界條件與節點流速 33
3-5-2閥公式 34
3-6求解步驟 35
第四章、製程描述 38
4-1 變壓吸附製程 39
4-2 氣體性質與吸附參數 43
4-3突破曲線模擬驗證 48
第五章、數據分析與結果討論 50
5-1雙塔八步驟H2-PSA程序之模擬 50
5-1-1 進料壓力對H2-PSA製程的影響 52
5-1-2 真空壓力對H2-PSA製程的影響 59
5-1-3 吸附塔塔長對H2-PSA製程的影響 67
5-1-4 產氣時間對H2-PSA製程的影響 74
5-1-5 沖洗時間對H2-PSA製程的影響 81
5-1-6 進料加壓時間對H2-PSA製程的影響 89
5-1-7 產氣加壓時間對H2-PSA製程的影響 96
5-2雙塔八步驟CO2-PSA程序之模擬 103
5-2-1 進料壓力對CO2-PSA製程的影響 104
5-2-2 真空壓力對CO2-PSA製程的影響 114
5-2-3 吸附塔塔長對CO2-PSA製程的影響 123
5-2-4 產氣時間對CO2-PSA製程的影響 130
5-2-5 沖洗時間對CO2-PSA製程的影響 137
5-2-6 進料加壓時間對CO2-PSA製程的影響 145
5-2-7 產氣加壓時間對CO2-PSA製程的影響 152
第六章、結論 160
符號說明 164
參考文獻 168
附錄A、流速之估算方法 173
附錄B、濃度分布圖 177
參考文獻 [1] T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda and Y. Miyazaki “Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide”, Electrochemistry Communications, Vol. 4, no. 5, pp. 442-446, 2002
[2] Evaluation of Alternate Water Gas Shift Configurations for IGCC Systems The United States Department of Energy, National Energy Technology Laboratory DOE/NETL-401/080509, 2009
[3] C.W. Skarstrom, “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960
[4] P. G. de Montgareuil and D. Domine, “Process for Separating a Binary Gaseous Mixture by Adsorption”, U.S. Patent 3,155,468, assigned to Societe L`Air Liquide, Paris, 1964
[5] R. T. Yang, Gas Separation by Adsorption Processes., Imperial College Press., London, 1997
[6] N.H. Berlin, “Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
[7] G. Heinze, Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
[8] D.E. Kowler and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AIChE J., vol. 31, no. 6, pp. 1207-1212, 1972
[9] T. Tamura, “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
[10] S. Sircar and T.C. Golden, “Purification of Hydrogen by Pressure Swing Adsorption”, Separation Science and Technology, vol. 35, no. 5, pp. 667-687, 2000
[11] R. Kumar, W.C. Kratz, D.E. Guro, D.L. Rarig and W.P. Schmidt, “Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption”, Separation Science and Technology, vol. 27, no. 4, pp. 509-522, 1992
[12] D. Diagne, M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removal and Enrichment”, J. Chem. Eng. Japan, vol. 27, no. 1, pp. 85-89, 1994
[13] B.K. Na, K.K. Koo, H. Lee and H.K. Song, “Effect of Rinse and Recycle Methods on The Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., vol. 41, no. 22, pp. 5498-5503, 2002
[14] C.H. Lee, J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA For Coke Oven Gas”, AIChE J., vol. 45, no. 3, pp. 535-545, 1999
[15] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, vol. 14, no. 4-5, pp. 575-582, 2008
[16] J.G. Jee, M.B. Kim and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., vol. 40, no. 3, pp. 868-878, 2001
[17] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of Dual-Bed Pressure Swing Adsorption For CO2 Recovery from Boiler Exhaust Gas”, Separation and Purification Technology, vol. 24, no. 3, pp. 519-528, 2001
[18] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., vol. 17, no. 2, pp. 335-342, 1971
[19] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System CO2 in He(I)”, Chem. Eng. Sci., vol. 27, no. 7, pp. 1449-1458, 1972
[20] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, vol. 16, no. 2, pp. 114-119, 1983
[21] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., vol. 41, no. 5, pp. 1333-1343, 1986
[22] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., vol. 32, no. 3, pp. 397-410, 1986
[23] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., vol. 33, no. 6, pp. 1045-1049, 1987
[24] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., vol. 42, no. 8, pp. 2037-2043, 1987
[25] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., vol. 45, no. 1, pp. 107-115, 1990
[26] J. Yang, S. Han, C. Cho, C.H. Lee and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-Column PSA Process”, Separations Technology, vol. 5, no. 4, pp. 239-249, 1995
[27] J. Yang, C.H. Lee and J.W. Chang, “Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res., vol. 36, no. 7, pp. 2789-2798, 1997
[28] J.H. Park, H.T. Beum, J.N. Kim and S.H. Cho, “Numerical Analysis on The Power Consumption of The PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., vol. 41, no. 16, pp. 4122-4131, 2002
[29] J. Yang and C. H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas”, AIChE J., vol. 44, no. 6, pp. 1325-1334, 1998
[30] J.H. Park, J.N. Kim and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., vol. 46, no. 4, pp. 790-802, 2000
[31] C. Voss, “Applications of Pressure Swing Adsorption Technology”, Adsorption, vol. 11, no. 1, pp. 527-529, 2005
[32] Y.C. Xie, J.P. Zhang, J.G. Qiu, X.Z. Tong, J.P. Fu, G. Yang, H.J. Yan and Y.Q. Tang, “Zeolites Modified by CuCl for Separating CO From Gas Mixtures Containing CO2”, Adsorption, vol. 3, no. 1, pp. 27-32, 1996
[33] N.N. Dutta and G.S. Patil, “Developments in CO Separation”, Gas Separation& Purification, vol. 9, no. 4, pp. 277-283, 1995
[34] L.Q. Zhu, J.L Tu and Y.J. Shi, “Separation of CO-CO2-N2 Gas Mixture for High-Purity CO by Pressure Swing Adsorption”, Gas Separation& Purification, vol. 5, no. 3, pp. 173-176, 1991
[35] P. Xiao, S. Wilson, G. Xiao, R. Singh and P. Webley, “Novel adsorption processes for carbon dioxide capture within an IGCC process”, Energy Procedia, vol. 1, no. 1, pp.631-638, 2009
[36] F. V. S. Lopes, C. A. Grande, A. M. Ribeiro, V. J. P. Vilar, J. M. Loureiro and A. E. Rodrigues, “Effect of Ion Exchange on the Adsorption of Steam Methane Reforming Off-Gases on Zeolite 13X”, J. Chem. Eng. Data, 55 (1), pp. 184–195, 2010
[37] F. V. S. Lopes, C. A. Grande, A. M. Ribeiro, E. L. G. Oliveira, J. M. Loureiro and A. E. Rodrigues, “Enhancing Capacity of Activated Carbons for Hydrogen Purification”, Ind. Eng. Chem. Res., 48 (8), pp 3978–3990, 2009
[38] Malek and S. Farooq, “Kinetics of Hydrocarbon Adsorption on Activated Carbon and Silica Gel” AIChE Journal,Volume 43, Issue 3, pp. 761–776, March 1997
[39] A. Gorbach, M. Stegmaier and G. Eigenberger, “Measurement and modeling of water vapor adsorption on Zeolite 4A-equilibria and kinetics”, Adsorption, 10 (1), pp.29–46, 2004
[40] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960
[41] D. F. Fairbanks and C. R. Wilke, “Diffusion Coefficients in Multicomponent Gas Mixtures”, Ind. Eng. Chem., 42 (3), pp. 471–475, 1950
[42] N. Wakao and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Correlation of Sherwood numbers”, Chem. Eng. Sci., 33(10), pp. 1375–1384, 1978
[43] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975
[44] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001
[45] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill, Inc., New York, 1954
[46] J.M. Smith, H.C. Van Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, Inc., New York, 2001
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明