博碩士論文 983204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:18.119.253.184
姓名 林東翰(Dong-han Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鎳矽化物及矽單晶奈米結構陣列之製備與性質研究
(Fabrication of the nickel silicide and silicon nanostructure array and their properties)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要分為兩部分,第一部分主要為在(001)矽晶基材上製備出準直規則排列且尺寸大小可調變的一維矽晶奈米結構陣列,及其性質檢測。而第二部分則利用在矽晶奈米線上沉積適量的鎳金屬薄膜並進行熱退火處理製程步驟在矽晶基材上製備出準直有序排列的鎳矽化物奈米線陣列。
也將對所製備出之各式一維矽晶及鎳矽化物奈米結構陣列之表面形貌、晶體結構、成長動力學、表面濕潤行為、光學特性及場發射性質,利用掃描式電子顯微鏡、穿透式電子顯微鏡、選區電子繞射分析、接觸角量測儀及電子場發射量測進行一系列有系統的分析。
摘要(英) This study is divided into two parts. The first part mainly focuses on the on the synthesis and characterization of well-ordered arrays of size-controlled, vertically-aligned 1D Si nanostructure on the (001)Si substrates and their properties, and the other part focuses on the growth of periodic vertically-aligned Ni silicide nanowire arrays on Si substrates by appropriate Ni thin film deposition method and heat treatments. The surface morphologies, crystal structures, growth kinetics, surface wettability, optical and field emission properties of the produced nanowire structures were systematically characterized using SEM, TEM, SAED techniques, water contact angle measurement system, and electron emission measurement system.
關鍵字(中) ★ 鎳矽化物
★ 矽單晶奈米線
★ 場發射
關鍵字(英) ★ silicon nanowire
★ nanostructure
★ vertically-aligned
★ Ni thin film
論文目次 目錄
中文摘要.................................................i
英文摘要................................................ii
誌謝...................................................iii
目錄....................................................iv
圖目錄.................................................vii
表目錄..................................................xi
第一章 前言及文獻回顧....................................1
1-1 前言................................................1
1-2 矽晶奈米線製備方法-乾式製程.........................2
1-2-1 化學氣相沉積法.................................2
1-2-2 反應性離子蝕刻法...............................6
1-3 矽晶奈米線製備方法-濕式化學蝕刻製程.................7
1-3-1 金屬輔助化學蝕刻法.............................7
1-3-2 金屬催化濕式蝕刻法.............................7
1-4 奈米球微影術........................................8
1-4-1 奈米球的自組裝行為.............................8
1-4-2 奈米球微影術的發展.............................9
1-5 金屬催化結合奈米球微影術製備矽晶奈米線.............10
1-6 金屬矽化物.........................................11
1-6-1 金屬矽化物應用與製程..........................11
1-6-2 鎳金屬薄膜矽化物..............................13
1-6-3 金屬矽化物奈米線..............................13
1-7 氫氧化鉀蝕刻矽晶奈米線.............................14
1-7-1 矽非等向性蝕刻液種類..........................14
1-7-2 氫氧化鉀的蝕刻機制............................15
1-8 接觸角之相關原理...................................16
1-9 場發射電極元件.....................................17
1-9-1 場發射相關理論................................18
1-10 研究動機及目標....................................19
第二章 實驗步驟及儀器設備...............................20
2-1 實驗步驟...........................................20
2-1-1 矽晶基材使用前處理............................20
2-1-2 奈米球模板製備................................21
2-1-3 以氧電漿蝕刻控制奈米球模板之直徑..............21
2-1-4 蒸鍍金屬薄膜..................................22
2-1-5 在常溫常壓矽晶基材上製備規則單晶矽奈米線陣列..22
2-1-6 製備準直規則鎳矽化物奈米線陣列................22
2-1-7 製備準直規則奈米圓錐陣列......................23
2-2 試片分析...........................................24
2-2-1掃描式電子顯微鏡 (SEM).........................24
2-2-2穿透式電子顯微鏡 (TEM).........................24
2-2-3真空場發射特性量測系統.........................25
2-2-4紫外光-可見光光譜儀............................25
2-2-5影像式接觸角量測儀.............................25
第三章 結果與討論.......................................26
3-1 奈米球模板製備.....................................26
3-2 利用電漿蝕刻法調控奈米球陣列之球徑模板製備.........26
3-3 以金屬催化蝕刻法結合奈米球微影術製備矽單晶奈米線陣列及性質分析................................................27
3-4 氫氧化鉀蝕刻矽晶奈米線及場發射性質量測.............30
3-4-1 製備大面積有序排列之矽晶奈米錐陣列............30
3-4-2矽晶奈米線與矽晶奈米錐陣列的場發射性值量測.....32
3-5 鎳矽化物奈米線之結構及晶向分析鑑定.................35
3-5-1鎳矽化物奈米線之製備...........................35
3-5-2鎳矽化物奈米線之場發射性值量測.................38
3-5-3鎳矽化物之接觸角性值量測.......................41
第四章 結論.............................................43
參考文獻...............................................45
參考文獻 [1] T. Sondergaard and S. I. Bozhevolnyi, “Metal Nano- strip Optical Resonators,” Opt. Express 15 (2007) 4198- 4204.
[2] W. J. Cho and C. G. Ahn, “Thermal Annealing Effects on the Electrical Characteristics of the Back Interface in Nano-silicon-on-Insulator Channel,” Appl. Phys. Lett. 90 (2007) 143509-143511.
[3] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and Characterization of Nano-particulate PtCo Media for Ultra-High Density Perpendicular Magnetic Recording,” Nanotechnology. 18 (2007) 205301-205309.
[4] M. Kiuchi, S. Matsui, and Y. Isono, “Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device,” J. Microelectromech. Syst. 16 (2007) 191-201.
[5] J. Fang, X. Ma, H. Cai, X. Song and B. Ding, “Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures,” Nanotechnology. 17 (2006) 5841-5845.
[6] K. Wegner, P. Piseri, H. V. Tafreshi and P. Milani, “Cluster beam deposition: a tool for nanoscale science and technology,” J. Phys. D: Appl. Phys. 39 (2006) R439-R459.
[7] S. Miserendino, J. Yoo, A. Cassell and Y. C. Tai, “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays,” Nanotechnology. 17 (2006) S23-S28.
[8] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile and C. P. Tripp, “Template-assisted fabrication of dense aligned arrays of titania nanotubes with well-controlled dimensions on substrates,” Adv. Mater. 16 (2004) 2052-2057.
[9] M. Zheng, G. Li, X. Zhang, S. Huang, Y. Lei and L. Zhang, “Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane,” Chem. Mater. 13 (2001) 3859-3861.
[10] X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao and F. Phillipp, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays,” Chem. Mater. 13 (2001) 2511-2515.
[11] K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates,” Nano Letter. 4 (2004) 167-171.
[12] T. Y. Zhang, W. Zhao and J. C. Cao, “Optical response in a quantum dot superlattice nanoring under a lateral electric field,” Phys. Rev. B. 72 (2005) 165310-1-6.
[13] F. Sun, J. C. Yu and X. Wang, “Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications,” Chem. Mater. 18 (2006) 3774-3779.
[14] J. Chen and L. M. Wu, “Syntheses and characterizations of Bismuth nanofilms and nanorhombuses by thestructure-controlling solventless method,” Inor. Chem. 46 (2007) 586-591.
[15] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-Ion Battery,” Appl. Phys. Lett. 96 (2010) 053110-1~053110-3.
[16] C. Zhang, P. Chen, J. Liu, Y. Zhang, W. Shen, H. Xu, and Y. Tang, “Ag Microparticles Embedded in Si Nanowire Arrays: A Novel Catalyst for Gas-Phase Oxidation of High Alcohol to Aldehyde,” Chem. Commun. 28 (2008) 3290-3292.
[17] N. N. Mishra, W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki, “Ultra-Sensitive Detection of Bacterial Toxin with Silicon Nanowire Transistor,” Lab on a Chip 8 (2008) 868-871.
[18] S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, C. Fan, and S. T. Lee, “High-Sensitivity Pesticide Detection via Silicon Nanowires-Supported Acetylcholinesterase-Based Electrochemical Sensors,” Appl. Phys. Lett. 93 (2008) 023113-1~023113-3.
[19] L. Mu, W. Shi, J. C. Chang, and S. T. Lee, “Silicon Nanowires-Based Fluorescence Sensor for Cu(II),” Nano Lett. 8 (2008) 104-109.
[20] H. Wang, X. H. Zhang, D. D. D. Ma, and S. T. Lee, “Large-Scale Silica Nanowire Array Grown on Liquid Tin and Its Applications as Hg (II) Scavenger,” Appl. Phys. Lett. 93 (2008) 023119-1~023119-3.
[21] Z. H. Chen, J. S. Jie, L. B. Luo, H. Wang, C. S. Lee, and S. T. Lee, “Applications of Silicon Nanowires Functionalized with Palladium Nanoparticles in Hydrogen Sensors,” Nanotechnology 18 (2007) 345502-1~345502-5.
[22] L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano lett. 7 (2007) 3249-3252.
[23] K. Peng, X. Wang, and S. T. Lee, “Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103-1~163103-3.
[24] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[25] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[26] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[27] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082-1087.
[28] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119-1~143119-3.
[29] J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design Guidelines of Periodic Si Nanowire Arrays for Solar Cell Application,” Appl. Phys. Lett. 95 (2009) 243113-1~243113-3.
[30] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[31] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[32] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[33] G. S. Doerk, N. Ferralis, C. Carraro, and R. Maboudian, “Growth of Branching Si Nanowires Seeded by Au-Si Surface Migration,” J. Mater. Chem. 18 (2008) 5376-5381.
[34] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[35] F. Iacopi, P. M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, and H. Griffiths, “Plasma-Enhanced Chemical Vapour Deposition Growth of Si Nanowires with Low Melting Point Metal Catalysts: An Effective Alternative to Au-Mediated Growth,” Nanotechnology 18 (2007) 505307-1~505307-7.
[36] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835-1837.
[37] N. Fukata, T. Oshima, N. Okada, T. Kizuka, T. Tsurui, S. Ito, and K. Murakami, “Phonon Confinement in Silicon Nanowires Synthesized by Laser Ablation,” Physica B 376 (2006) 864-867.
[38] R. Douani, T. Hadjersi, R. Boukherroub, L. Adour, and A. Manseri, “Formation of Aligned Silicon-Nanowire on Silicon in Aqueous HF/(AgNO3+Na2S2O8) Solution,” Appl. Surf. Sci. 254 (2008) 7219-7222.
[39] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, “Massive Transfer of Vertically Aligned Si Nanowire Array onto Alien Substrates and Their Characteristics,” Appl. Surf. Sci. 255 (2009) 8566-8570.
[40] K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026-3035.
[41] X. Wang, K. L. Pey, W. K. Choi, C. K. F. Ho, E. Fitzgerald, and D. Antoniadis, “Arrayed Si/SiGe Nanowire and Heterostructure Formations via Au-Assisted Wet Chemical Etching Method,” Electrochem. Solid-State Lett. 12 (2009) K37-K40.
[42] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G. R. Lin, “Aspect-Ratio-Dependent Ultra-Low Reflection and Luminescence of Dry-Etched Si Nanopillars on Si Substrate,” Nanotechnology. 20 (2009) 035303-1~035303-7.
[43] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[44] K. Peng and J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution,” Electrochim. Acta. 49 (2004) 2563-2568.
[45] T. Qiu, X. L. Wu, Y. F. Mei, P. K. Chu, and G. G. Siu, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method,” Appl. Phys. A 81 (2005) 669-671.
[46] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123-1~163123-3.
[47] J. D. Boor, N. Geyer, J. V Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm Silicon Nanowires by Laser Interference Lithography and Metal-Assisted Etching,” Nanotechnology 21 (2010) 095302-1~095302-5.
[48] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999) 3129-3131.
[49] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties, ” Appl. Phys. Lett. 93 (2008) 113109-1~113109-3.
[50] S. Itoh and M. Tanaka, “Current Status of Field-Emission Displays,” Proceedings of the IEEE. 90(2002) 514~520.
[51] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[52] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett. 78 (2001) 2214-2216.
[53] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[54] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth Structures of Molecular-Scale Silicon Nanowires,” Nano Lett. 4 (2004) 433-436.
[55] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58 (1998) R16024-R16026.
[56] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assited Growth of Semiconducting Nanowires,” Adv. Mater. 15 (2002) 635-640.
[57] C. P. Li, C. S. Lee, X. L. Ma, N. Wang, R. Q. Zhang, and S. T. Lee, “Growth Direction and Cross-Sectional Study of Silicon Nanowires,” Adv. Mater. 15 (2003) 607-609.
[58] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[59] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[60] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid-Liquid-Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701-1~185701-5.
[61] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[62] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[63] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9 (2009) 279-282.
[64] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082-1087.
[65] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G. R. Lin, “Aspect-Ratio-Dependent Ultra-Low Reflection and Luminescence of Dry-Etched Si Nanopillars on Si Substrate,” Nanotechnology 20 (2009) 035303-1~035303-7.
[66] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[67] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[68] A T. G. Cha, J. W. Yi, M. W. Moon, K. R. Lee, and H. Y. Kim, “Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness,” Langmuir 26 (2010) 8319-8326.
[69] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[70] R. Douani, T. Hadjersi, R. Boukherroub, L. Adour, and A. Manseri, “Formation of Aligned Silicon-Nanowire on Silicon in Aqueous HF/(AgNO3+Na2S2O8) Solution,” Appl. Surf. Sci. 254 (2008) 7219-7222.
[71] S. C. Shiu, S. C. Hung, J. J. Chao, and C. F. Lin, “Massive Transfer of Vertically Aligned Si Nanowire Array onto Alien Substrates and Their Characteristics,” Appl. Surf. Sci. 255 (2009) 8566-8570.
[72] T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth Mechanism of Silicon Nanowires and Silver Dendrites,” J. Electron. Mater. 35 (2006) 1879-1884.
[73] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution,” Chem. Eur. J. 12 (2006) 7942-7947.
[74] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13 (2003) 127-132.
[75] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[76] H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, “Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles,” Nano Lett. 10 (2010) 864-868.
[77] K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026-3035.
[78] C. Chartier, S. Bastide, and C. Lévy-Clément, “Metal-Assisted Chemical Etching of Silicon in HF-H2O2,” Electrochim. Acta. 53 (2008) 5509-5516.
[79] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210-6216.
[80] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[81] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, and Z. Y. Zhang, “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires,” Appl. Phys. Lett. 84 (2004) 3867-3869.
[82] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16 (2006) 387-394.
[83] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays,” Angew. Chem. Int. Ed. 44 (2005) 2737-2742.
[84] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[85] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[86] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[87] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates,” Langmuir. 8 (1992) 3183-3190.
[88] Micheletto, H. Fukuda and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles, ” Langmuir 11 (1995) 3333-3336.
[89] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles”, Colloids Surf. Physicochem. ” Eng. Aspects 219 (2003) 1-6.
[90] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.R.
[91] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[92] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,” Adv. Mater. 17 (2005) 1507-1511.
[93] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[94] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[95] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[96] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[97] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[98] Y. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D. W. Hess, and C. P. Wong, “Superhydrophobic and Low Light Reflectivity Silicon Surfaces Fabricated by Hierarchical Etching,” Langmuir. 24 (2008) 10421-10426.
[99] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter and A. F. Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect for VLSI Device Technology,” IEEE Trans. Electron. Device. 29 (1982) 547-553.
[100] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron. Device. 38 (1991) 262.
[101] Li. Wan, X. Zhang, B. Tang, Y. Ren, X. Cheng, D. Xu, H. Luo, and Y. Huang, “Effects of Laser in situ Annealing on Crtstal Quality of NiSi film grown on Si(001) substrate,” Thin Solid Films. 58 (2010) 2646-3649.
[102] F. D. Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure : A Marker Study of the Formation of NiSi2 Thin Film,” J. Appl. Phys. 53 (1982) 5678-5681.
[103] L. J. Chen, J. W. Mayer, and K. N. Tu, “Formation and Structure of Epitaxial Silicides on Silicon,” Thin Solid Film. 93 (1982) 135-141.
[104] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature. 430 (2004) 61-65.
[105] K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim, and J. J. Kim, “Anomalous Growth and Characterization of Carbon-Coated Nickel Nitride Nanorods Using Carbon Nanotube as a Template,” Appl. Phys. Lett. 71 (1997) 2271-2273.
[106] C. A. Decker, R. Solanki, J. L Freeouf, J. R. Carruthers, and D. R. Evans, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84 (2004) 1389-1391.
[107] J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitxial Nickel Silicide Nanowires,” Appl. Phys. Lett. 85 (2004) 281-283.
[108] C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, and L. J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology. 22 (2011) 055603-1~055603-9.
[109] I. Zubel and M. Kramkowska, “Development of etch hillocks on different Si(hkl) planes in silicon anisotropic etching,” Surf. Sci. 602 (2008) 1712–1721.
[110] Palik, E. D., V. M. Bermudez, and O. J. Glembocki, “Ellipsometric Study of the Etch-Stop Mechansim in Heavily Doped Silicon,” J. Electrochem. Sec. 132,135-141, 1985.
[111] P. H Cutler, and R. H Good, Jr, “Higher Order Corrections to the Filed Emission Current Formula,” Phys. Rev. 104 (1956) 308-308.
[112] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” OXFORD Science Publications, 66, 816 (1982).
[113] R. N. Wenzel, “Surface Roughness and Contact Angle,” J. Phys. Chem. 53 (1949) 1466-1467.A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[114] A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[115] Palik, E. D., J. W Faust, H.E Gray, and R F. Green, “Study of the Etch-Stop Mechanism in Silicon,” J.Electrochem.Soc. 129,2051-2059,1982.
[116] S. Itoh and M. Tanaka, “Current Status of Field-Emission Displays,” Proceedings of the IEEE. 90(2002) 514~520.
[117] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999) 3129-3131.
[118] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties, ” Appl. Phys. Lett. 93 (2008) 113109-1~113109-3.
[119] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties, ” J. phys. Chem. C. 113 (2009) 2286~2289.
[120] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001)Si Substrate,” Thin Solid Films. 518 (2010) S190-S195.
[121] L. Lin, S. Guo, X. Sun, J. Feng, Y. Wang, “Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays ,” Nanoscale Res Lett. 5 (2010) 1822-1828.
[122] H. Chen, R. Zou, H. Chen, N. Wang, Y. Sun, Q. Tuan, J. Wu, Z Chen, and J. Hu, “Lightly diped single crystalline porous Si nanowires with improved optical and electrical properties,” Matter. Chem. 21 (2011) 801-805.
[123] M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference Lithographically Defined and Catalytically Etched, Large-Area Silicon Nanocones from Nanowires,” Nanotechnology. 21 (2010) 205305-1~205305-8.
[124] Z. Huang, H Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Matter. 19 (2007) 744-748.
[125] K. Peng, Y. Xu, Y, Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications,” small. 11 (2005) 1062-1067.
[126] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface Profile-Controlled Close-Packed Si Nanorod Arrays for Self-Cleaning Antireflection Coatings,” J. Appl. Phys. 106 (2009) 114310-1~114310-4.
[127] S. Ravipati, C. J. Kuo, J. Shieb, C. T. Chou, and F. H. Ko, “Fabrication and enhanced field emission properties of novel silicon nanostructures,” Microelectron. Reliab. 50 (2009) 1973-1976.
[128] S. W. Lee, B. L. Wu, and H. T. chang, “Fabrication of Nanometer-Scale Si Field Emitters Using Self-Assembled Ge Nanomasks,” J. Electroche.l soc. 157 (2010) H174-177.
[129] S. Jiang, Q. Xin, Y. Chen, H. Lou, Y. Lv, and W. Zeng, “Preparation of NiSi2 Nanowire with Low Resistivity by Reaction Between Ni Coating and Silicon Nanowires,” Appl. Phys. Express. 2 (2009) 075005-075007.
[130] H. F. Hsu, C. H. Tseng, and T. H. Chen, “Formation of Epitaxial NiSi2 Nanowire on Si(001) Surface by Atomic Force Microscope Nanolithography,” Nanosci. Nanotech. 10 (2010) 4533-4537.
[131] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[132] S. Wan, Y. Yu, and J. Zhang, “The Synthesis of Aligned Silicon Nanowires under Ambient Atmospheric Pressure,” J. Non-Cryst. Solids. 355 (2009) 518-520.
[133] H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, “Biomimetic Antireflective Si Nanopillar Arrays,” Small 4 (2008) 1972-1975.
[134] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, and Z. Y. Zhang, “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires,” Appl. Phys. Lett. 84 (2004) 3867-3869.
[135] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K Maex, “Comparative Study of Ni-Silicide and Co-Silicide for sub 0.25-μm Technologies,” Microelectronic Engineering. 50 (2000) 103-116.
[136] J. C. Hulteen and R. P. Van Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[137] H. E. Jeong, S. H. Lee, J. K. Kim, and K. Y. Suh, “Nanoengineered Multiscale Hierarchical Structures with Tailored Wetting Properties,” Langmuir 22 (2006) 1640-1645.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2011-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明