博碩士論文 983209005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.137.218.215
姓名 許經世(Chin-Shih Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銅-鎳薄膜鍵合技術之研究
(The study of Cu-Ni thin-film bonding technique)
相關論文
★ 以多孔矽為基板的矽奈米線陣列結構製程研究★ 塑膠機殼內部表面處理對電磁波干擾防護研究
★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究
★ 石墨材料時變劣化微結構分析★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響
★ 可程式控制器機構設計之流程研究★ 伺服沖床運動曲線與金屬板材成型關聯性分析
★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究
★ 複合式類神經網路預測貨櫃船主機油耗★ 熱力微照射製作絕緣層矽晶材料之研究
★ 微波活化對被植入於矽中之氫離子之研究★ 矽/石英晶圓鍵合之研究
★ 奈米尺度薄膜轉移技術★ 光能切離矽薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 微機電固態照明以及航太機械產業中,鍵合晶圓對是相當重要的製程,特別是在接合強度,以及接合後的鍵合對在各種環境下測試是否會發生諸如材料的潛變、鬆弛或疲勞破壞以及鍵合後的內部應力問題;這些都是傳統冶金製程可能造成的問題,尤其冶金製程常用到高溫的熔煉或焊壓的製程,以致限制產品元件的製作;例如金屬鍵合的製程在LED 的基板也扮演了一個重要的角色,目前業界量產的主要材料為金銀晶圓鍵合對,主因其導電、導熱性良好,但也因其成本明顯的高於其他種類金屬鍵合對;此外也有擴散進入元件層的顧慮,因此不同的金屬擴散鍵合材料也被陸續的開發進而應用在LED製程裡。新材料的開發主要透過金屬對的二元相圖、晶格常數差異、熱膨脹係數及擴散係數四種方面做考量,是故篩選的條件非常的嚴苛,有很多組導電、導熱性良好且成本相較低廉的金屬晶圓鍵合對,因其物理性質方面的限制導致無法被開發,而本研究透過鍵合表面化學的處理方法,排除了這些物理條件的限制。
本實驗成功的利用浸泡HCl(aq)的方式,在200℃ [1.177M] 1hr 的參數使銅鎳晶圓對成功的鍵合,且其平均鍵合強度達到約0.54MPa;經過後續的OM及SEM 對表面做觀測及EDS 元素成分分析更加確立了此種方法的可行性,為金屬接合開啟了低溫化學鍵合的新製程。
摘要(英) Wafer bonding is a critical processing technique in MEMS and aerospace industry. It contains several potential problems such as Creep, Relaxation and Fatigue under the tests of varieties of environmental condition due to the traditional metallurgical processing. In addition, high
temperature process such as welding and rolling are required, and the manufacturing processes limit the development of produces and elements. For example, metallic bonding technique plays a crucial role in LED
substrate; Au-Ag wafer bonding pairs is the main material in massive production. The obvious advantages of Au-Ag wafer bonding pairs are their high electrical and thermal conductivity, but the drawback is that they are highly costly. A variety of new wafer bonding pairs are being
developed consistently and applied in LED manufacturing process. The development of new materials mainly depends on their physical properties such as binary phase diagram, the difference of lattice mismatch, CTE (coefficient of thermal expansion) and diffusivity; the limitations are very strict. Many materials with good electrical and
thermal conductivity with lower-cost cannot be developed because of their other poor mechanical properties. The bonding surface chemical treatment will be applied in this study so as to make a brand-new process which completely rules the physical limitations out.
The immersion of Cu-Ni bonding pairs in hydrochloric acid makes bonding pairs successfully bonding at 200℃ [1.177M] 1hr in this study, and the average maximum bonding strength can attains 0.54MPa. OM (Optical micrograph)、SEM (Scanic electron micrograph) and EDS (Electronic Data Systems) are used to observe and analyze the surface after the chemical treatment which further ascertain the feasibility and open a new era for low-temperature metallic bonding.
關鍵字(中) ★ 低溫化學鍵合
★ 鹽酸
★ 金屬擴散鍵合
★ 銅鎳晶圓對
關鍵字(英) ★ Hydrochloric acid
★ Cu-Ni wafer bonding
★ Low-temper
論文目次 總目錄
頁碼
中文摘要..............................................i
英文摘要..............................................ii
誌謝..................................................iii
目錄 .................................................vi
圖目錄................................................viii
表目錄 ...............................................xiii
第一章緒論
1-1 研究背景 .........................................1
1-2 研究動機 .........................................2
第二章文獻回顧
2-1 晶圓鍵合技術......................................4
2-1.1 直接晶圓鍵合....................................4
2-1.1.1 直接鍵合..................................... 4
2-1.1.2 低溫鍵合 .....................................7
2-1.1.3 陽極鍵合 .....................................9
2-1.2 非直接晶圓鍵合 .................................9
2-1.2.1 共晶鍵合 .....................................9
2-1.2.2 黏著鍵合......................................10
2-1.2.3 玻璃介質鍵合..................................10
2-2 Kirkendall 擴散偶的簡介...........................11
2-2.1 Matano 方法 ....................................11
2-2.2 擴散鍵合金屬對的特性............................13
2-2.3 銅鎳鍵合的研究回顧..............................14
2-3 銅-鎳化學鍵合的反應機制理論.......................15
2-3.1 水膜的反應機制 .................................15
2-3.2 鹽酸處理 .......................................16
2-3.3 氫氟酸處理 .....................................19
2-3.4 硫酸處理 .......................................20
第三章實驗方法及步驟
3-1 實驗目的..........................................39
3-2 實驗準備與流程 ...................................39
3-2.1 實驗機台 .......................................39
3-2.2 實驗材料準備 ...................................39
3-2.3 實驗流程 .......................................40
第四章實驗結果與討論
4-1 Au-Ag 鍵合 .......................................48
4-2 Cu-Ni 鍵合 .......................................48
第五章結論與未來展望
5.1 結論 .............................................66
5.2 未來展望與後續工作 ...............................66
參閱文獻 .............................................67
圖目錄
圖1.1Weld overlay ....................................3
圖1.2 Laser cladding..................................3
圖2.1 (a) 凡得瓦力(b) 毛細作用力(c) 庫倫靜電力........22
圖2.2 親水性鍵合示意圖 ...............................22
圖2.3 疏水性鍵合示意圖 ...............................23
圖2.4 在不同溫度下的退火時間vs 鍵合能 ................23
圖2.5 在不同環境下的退火時間vs 鍵合能 ................24
圖2.6 陽極鍵合示意圖..................................24
圖2.7 金-矽二元相圖...................................25
圖2.8 Kirkendall 擴散偶...............................25
圖2.9 Matano 擴散濃度示意圖...........................26
圖2.10 金-銀二元相圖 26
圖2.11 銅鎳鍵合對在不同溫度vs 鍵合強度................27
圖2.12 銅-鎳鍵合對在900 °C (a) OM (b) micrograph 的檢測
圖....................................................27
圖2.13 銅-鎳-不繡鋼的擴散鍵合操作機台.................28
圖2.14 氫氟酸溶液中的氫鍵反應示意圖 ..................28
圖2.15 水分子對銅的庫倫靜電力不同結構的反應示意圖 ....29
圖2.16 表面原子及缺陷的示意圖.........................29
圖2.17 銅在鹽酸溶液中的反應機制.......................30
圖2.18 鎳在鹽酸溶液中的反應機制.......................30
圖2.19 銅-鎳鍵合對在鹽酸溶液中加熱前的反應機制........31
圖2.20 銅-鎳鍵合對在鹽酸溶液中加熱後(>200℃)的反應機制31
圖2.21 銅在氫氟酸溶液中的反應機制 ....................32
圖2.22 鎳在氫氟酸溶液中的反應機制 ....................32
圖2.23 銅-鎳鍵合對在氫氟酸溶液中加熱前的反應機制......33
圖2.24 銅-鎳鍵合對在氫氟酸溶液中加熱後(400~500℃)的反應機制....................................................33
圖2.25 銅在硫酸溶液中的反應機制 ......................34
圖2.26 鎳在硫酸溶液中的反應機制 ......................34
圖2.27 銅-鎳鍵合對在硫酸溶液中加熱前的反應機制........35
圖2.28 銅-鎳鍵合對在硫酸溶液中加熱後的反應機制........35
圖3.1(a) 熱壓試驗機...................................43
圖3.1(b) 熱壓試驗機操控儀表板.........................44
圖3.1(c) 熱壓試驗機負載平台...........................44
圖3.2 4cm x 4cm Cu-Ni 鍵合晶圓對 .....................45
圖3.3 法碼及定滑輪 ...................................45
圖3.4 實驗流程總圖 ...................................47
圖4.1 (a) 純金的表面 .................................56
圖4.1 (b) 200℃銀擴散到金的表面.......................56
圖4.2 (a) 純銀的表面 .................................57
圖4.2 (b) 200℃金擴散到銀的表面 ......................57
圖4.3 銅表面的SEM 觀測圖..............................58
圖4.4 鎳表面的SEM 觀測圖..............................58
圖4.5 銅表面的EDS 元素成份分析........................59
圖4.6 鎳表面的EDS 元素成份分析........................59
圖4.7 (a) 銅200℃ HCl [0.602M] .......................60
圖4.7 (b) 銅200℃ HCl [1.177M] .......................60
圖4.7 (c) 銅200℃ HCl [1.455M] .......................60
圖4.7 (d) 銅200℃ HCl [2.338M] .......................60
圖4.7 (e) 銅200℃ HCl [3.167M] .......................60
圖4.7 (f) 銅200℃ HCl [11.4M] ........................60
圖4.8 (a) 鎳200℃ HCl [0.602M] .......................61
圖4.8 (b) 鎳200℃ HCl [1.177M] .......................61
圖4.8 (c) 鎳200℃ HCl [1.455M] .......................61
圖4.8 (d) 鎳200℃ HCl [2.338M] .......................61
圖4.8 (e) 鎳200℃ HCl [3.167M] .......................61
圖4.8 (f) 鎳200℃ HCl [11.4M] .......................61
圖4.9 (a) 銅250℃ HCl [0.602M] .......................62
圖4.9 (b) 銅250℃ HCl [1.177M] .......................62
圖4.9 (c) 銅250℃ HCl [1.455M] .......................62
圖4.9 (d) 銅250℃ HCl [2.338M] .......................62
圖4.9 (e) 銅250℃ HCl [3.167M] .......................62
圖4.9 (f) 銅250℃ HCl [11.4M] .......................62
圖4.10 (a) 鎳250℃ HCl [0.602M] ......................63
圖4.10 (b) 鎳250℃ HCl [1.177M] ......................63
圖4.10 (c) 鎳250℃ HCl [1.455M] ......................63
圖4.10 (d) 鎳250℃ HCl [2.338M] ......................63
圖4.10 (e) 鎳250℃ HCl [3.167M] ......................63
圖4.10 (f) 鎳250℃ HCl [11.4M] ......................63
圖4.11 (a) 銅300℃ HCl [0.602M] ......................64
圖4.11 (b) 銅300℃ HCl [1.177M] ......................64
圖4.11 (c) 銅300℃ HCl [1.455M] ......................64
圖4.11 (d) 銅300℃ HCl [2.338M] ......................64
圖4.11 (e) 銅300℃ HCl [3.167M] ......................64
圖4.11 (f) 銅300℃ HCl [11.4M] .......................64
圖4.12 (a) 鎳300℃ HCl [0.602M] ......................65
圖4.12 (b) 鎳300℃ HCl [1.177M].......................65
圖4.12 (c) 鎳300℃ HCl [1.455M] ......................65
圖4.12 (d) 鎳300℃ HCl [2.338M] ......................65
圖4.12 (e) 鎳300℃ HCl [1.455M] ......................65
圖4.12 (f) 鎳300℃ HCl [11.4M] .......................65
表目錄
表2.1 不同溫度下的金銀擴散係數及其活化能 .............36
表2.2 不同深度及不同方法測出的金銀擴散係數及其活化能 .36
表2.3 不同文獻記載的銅鎳擴散係數 .....................37
表2.4 不同溫度下(a)銅在鎳中(b)鎳在銅中的擴散係數 .....37
表2.5 銅與水的鍵長、角度及庫倫靜電能..................38
表2.6 鎳與水的鍵長、角度及庫倫靜電能..................38
表3.1 晶圓鍵合實驗種類................................46
表3.2 標準工業RCA 清洗製程 ...........................46
表4.1 Cu-Ni 晶圓鍵合對在不同溫度、濃度的鍵合強度測量表52
表4.2 六種不同的鹽酸濃度在200℃對Cu-Ni 對的鍵合強度表.53
表4.3 六種不同的鹽酸濃度在250℃對Cu-Ni 對的鍵合強度表.53
表4.4 Cu-Ni 最佳參數[1.177M] at 200℃取五片測試其平均鍵
合強度................................................54
表4.5 Cu-Ni 次佳參數[0.602M] at 250℃取五片測試平均鍵合
強度..................................................54
表4.6 銅表面EDS 元素成份分析..........................55
表4.7 鎳表面EDS 元素成份分析................ .........55
參考文獻 [1] Lo, I.H., Tsai, W.T. Effect of heat treatment on the precipitation and pitting corrosion behavior of 347 SS weld overlay Materials Science and Engineering A355 (2003) 137-143.
[2] Lin, J., Hwang, B.C. Coaxial laser cladding on an inclined substrate Optics & Laser Technology 31 (1999) 571-578.
[3] Yilmaz, O., Aksoy, M. Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple Journal of Materials Processing Technology 121 (2002) 136-142.
[4] Sabetghadama, H. Z., Hanzakia, A, Araeeb A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer Matereials characterization 61 (2010) 626-634.
[5] Chang, C. L., Chuang, Y. C., and Liu, C. Y., Ag/Au Diffusion Wafer Bonding for Thin-GaN LED Fabrication, Electrochemical and Solid-State Letters, 10 (11) (2007) H344-H346.
[6] Tong, Q.Y., Gosele, U. Semiconductor Wafer Bonding: Science and Technology, Wiley, New York, (1999).
[7] Pasquariello, D. Lindeberg, M. Hedlund, C. Hjort, K. Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding Sensors and Actuators 82 (2000) 239–244.
[8] Yu, W.B., Tan, C.M., Wei, J., Deng, S.S., Mui, SW., Nai, L. Influence of applied load on vacuum wafer bonding at low temperature Sensors and Actuators A 115 (2004) 67–72.
[9] Chen, M.X., Yuan, L.L., Liu, S. Research on low-temperature anodic bonding using induction heating Sensors and Actuators A 133 (2007) 266–269.
[10] Lee, C.C., William, W.S. High temperature silver-indium joints manufactured at low temperature Thin Solid Films 366 (2000) 196-201.
[11] YI, S., Trumble, K. P. and Gaskell, D. R. Thermodynamics analysis of aluminate stability in the eutectic bonding of copper with alumina Acta Mater. 47(11) (1999) 3221-3226. 68
[12] Chen, S.H., Chen, C.C., Luo, Z.P., Chao, C.G. Fabrication and characterization of eutectic bismuth–tin (Bi–Sn) nanowires Materials Letters 63 (2009) 1165–1168.
[13] Nakashima, K., Iwami, M., Hiraki, A. Low temperature diffusion of Au into Si in the Si (substrate) -Au (film) system Thin Solid Films, Volume 25(2) (1975) 423-430.
[14] Ho, G.L., Gren, J. A. Analysis of the Kirkendall effect, marker migration and pore formation Acta Mater. 49 (2001) 1311–1317.
[15] Sanchez, J., Quinn, D.P., Tringides, M.C. The use of the Boltzmann-Matano analysis in two-dimensional concentration profiles Surface Science 391 (1997) 101-108.
[16] Bukaluk, A. Determination of the activation energy of Ag diffusion through grain boundaries of thin Au films by using AES in a simplified accumulation method Applied Surface Science 35 (1988-89) 317-326.
[17] Bukaluk, A. Auger electron spectroscopy investigations of the effect of degradation of depth resolution and its influence on the interdiffusion data in thin film Au/Ag,Cu/Ag,Pd/Au and Pd/Cu multilayer structures Applied Surface Science 175-176 (2001)
790-796.
[18] Bukaluk, A. AES depth profile studies of interdiffusion in thin polycrystalline Au-Ag multilayer films Applied Surface Science 45 (1990) 57-64.
[19] Soria, F., Sacedon, J. L. Diffusion processes in the Au(111)/Ag(111) Thin film system Thin Solid Films,60 (1979) 113-121.
[20]Ahmed, M. Abdul-Lettif. Investigation of interdiffusion in copper–nickel bilayer thin films Physica B 388 (2007) 107–111.
[21] Schwarz, S.M., Kempshall, B.W., Giannuzzi L.A. Effects of diffusion induced recrystallization on volume diffusion in the copper-nickel system Acta Materialia 51 (2003) 2765–2776.
[22] Adamo, C., Lelj, F. A density functional study of bonding nickel atoms of water to copper and Journal of Molecular Structure (Theochem) 389 (1997) 83-89. 69
[23] Wells, A. F. Structural Inorganic Chemistry
5th ed., Oxford University Press, Oxford,UK,1984.
[24] Gill, N. S., Taylor, F. B. Tetrahalo Complexes of Dipositive Metals in the First Transition Series, Inorganic Syntheses 9 (1967) 136-142.
[25] Brussee, J., Groenendijk, J. L., Koppele, G., Jansen, A. C. A. Tetrahedron 41(1985) 3313.
[26] Nicholls, D. Complexes and First-Row Transition Elements, Macmillan Press, London,1973.
[27] Smith, D. W. Chlorocuprates(II). Coordination Chemistry Reviews. 21 (2-3) (1976) 93-158.
[28] Kear, G., Barker, B.D., Walsh, F.C. Electrochemical corrosion of unalloyed copper in chloride media––a critical review Corrosion Science 46 (2004) 109–135.
[29] Ismail, K M., Fathi, A. M. Badawy, W. A. Electrochemical behavior of copper–nickel alloys in acidic chloride solutions Corrosion Science 48 (2006) 1912–1925.
[30] W. L. Feng, J. J. Chen, Z. Han. Investigations of the optical and EPR spectrafor (NiX6)4- (X= Cl, Br, I) clusters Journal of Magnetism and Magnetic Materials 321 (2009) 3290–3292.
[31] Pray, A. P. Anhydrous Metal Chlorides. Inorganic Syntheses 28 (1990) 321–2.
[32] Stucky, G. D., J. B.. The Crystal and Molecular Structure of Tetraethylammonium Tetrachloronickelate (II).
Acta Crystallographica 23 (1967) 1064–1070.
[33] Burda, J. V. Pavelka, M., ima’nek, M. Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study Journal of Molecular Structure (Theochem) 683 (2004) 183–193.
[34] Stonea, John A., Dragic, V. Collisional dissociation studies of Cu21(H2O)n using electrospray ionization mass spectrometry International Journal of Mass Spectrometry 185/186/187 (1999) 227–229. 70
[35] Danielewicz-Ferchmin I., Ferchmin, A. R. Mass density in hydration shells of ions Physica B 245 (1998) 34-44.
[36] Yamaguchi, T., Ohzono, H., Yamagami, M., Yamanaka K., Yoshida K., Wakita H. Ion hydration in aqueous solutions of lithium chloride, nickel chloride, and cesium chloride in ambient to supercritical water Journal of Molecular Liquids 153 (2010) 2–8.
[37] Shevkunov, S. V., Lukyanov, S. I. Leyssale, J.M. Claude Millot. Computer simulation of Cl_ hydration in anion–water clusters Chemical Physics 310 (2005) 97–107.
[38] Vogt, M. R., Lachenwitzer, A., Magnussen, O. M., Behm, R. J. In-situ STM study of the initial stages of corrosion of Cu(100) electrodes in sulfuric and hychloric acid solution Surface Science 399 (1998) 49-69.
[39] Ismail, K. M., Fathi A.M., Badawy, W. A. Electrochemical behavior of copper–nickel alloys in acidic chloride solutions Corrosion Science 48 (2006) 1912–1925.
[40] Subramanian, M. A. and Manzer, L. E. A “Greener” Synthetic Route for Fluoroaromatics via Copper (II) Fluoride SCIENCE VOL 297 (2002).
[41] Kerstin, M. Forsberg, Ake. Rasmuson, C. Crystallization of metal fluoride hydrates from mixed hydrofluoric and nitric acid solutions, part II: Iron (III) and nickel (II) Journal of Crystal Growth 312
(2010) 2358–2362.
[42] Fedotova, M.V., Kruchinin, S.E., Rahman, H.M.A., Buchner, R. Features of ion hydration and association in aqueous rubidium fluoride solutions at ambient conditions Journal of Molecular Liquids 159 (2011) 9–17.
[43] Copper (II) sulfate MSDS. Oxford University (2007).
[44] All About Copper Sulfate. National Fish Pharmaceuticals (2007).
[45] Badawy, W. A. Ismail, K. M., Fathi, A.M. The influence of the copper/nickel ratio on the electrochemical behavior of Cu–Ni alloys in acidic sulfate solutions Journal of Alloys and Compounds 484
(2009) 365–370.
指導教授 李天錫(Tien-hsi Lee) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明